A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem

Autores
Gutiérrez Llorente, José Manuel; Ivanissevich, María Laura; Cofiño, Antonio S.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.
Facultad de Informática
Materia
Ciencias Informáticas
iterated function systems
image compression
Fractals
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9417

id SEDICI_f0bc4379bae18e5a5601e37cab3ef6fb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9417
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problemGutiérrez Llorente, José ManuelIvanissevich, María LauraCofiño, Antonio S.Ciencias Informáticasiterated function systemsimage compressionFractalsAlgorithmsThe key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.Facultad de Informática2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/9417enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/p3.pdfinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:40Zoai:sedici.unlp.edu.ar:10915/9417Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:40.317SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
title A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
spellingShingle A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
Gutiérrez Llorente, José Manuel
Ciencias Informáticas
iterated function systems
image compression
Fractals
Algorithms
title_short A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
title_full A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
title_fullStr A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
title_full_unstemmed A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
title_sort A comparison of different evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
dc.creator.none.fl_str_mv Gutiérrez Llorente, José Manuel
Ivanissevich, María Laura
Cofiño, Antonio S.
author Gutiérrez Llorente, José Manuel
author_facet Gutiérrez Llorente, José Manuel
Ivanissevich, María Laura
Cofiño, Antonio S.
author_role author
author2 Ivanissevich, María Laura
Cofiño, Antonio S.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
iterated function systems
image compression
Fractals
Algorithms
topic Ciencias Informáticas
iterated function systems
image compression
Fractals
Algorithms
dc.description.none.fl_txt_mv The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.
Facultad de Informática
description The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations)which approximates a given image with a certain prescribed accuracy (inverse IFS problem).In this paper,we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method.We also present an nteractive Matlab program implementing the algorithms described in the paper.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9417
url http://sedici.unlp.edu.ar/handle/10915/9417
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/p3.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615757465387008
score 13.070432