Gradual doubling property of Hutchinson orbits
- Autores
- Aimar, Hugo Alejandro; Carena, Marilina; Iaffei, Bibiana Raquel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classical self-similar fractals can be obtained as xed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, have both the doubling property. We prove that the elements of Hutchinson orbits satisfy the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina
Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina - Materia
-
Metric Space
Doubling Measure
Hausdorff-Kantorovich Metric
Iterated Function System - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13882
Ver los metadatos del registro completo
id |
CONICETDig_f175909ef390e520be0222d4e680f844 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13882 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gradual doubling property of Hutchinson orbitsAimar, Hugo AlejandroCarena, MarilinaIaffei, Bibiana RaquelMetric SpaceDoubling MeasureHausdorff-Kantorovich MetricIterated Function Systemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The classical self-similar fractals can be obtained as xed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, have both the doubling property. We prove that the elements of Hutchinson orbits satisfy the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; ArgentinaFil: Carena, Marilina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; ArgentinaFil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; ArgentinaSpringer Heidelberg2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13882Aimar, Hugo Alejandro; Carena, Marilina; Iaffei, Bibiana Raquel; Gradual doubling property of Hutchinson orbits; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 11-2015; 191-2050011-46421572-9141enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0168-3info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10587-015-0168-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:54Zoai:ri.conicet.gov.ar:11336/13882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:54.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gradual doubling property of Hutchinson orbits |
title |
Gradual doubling property of Hutchinson orbits |
spellingShingle |
Gradual doubling property of Hutchinson orbits Aimar, Hugo Alejandro Metric Space Doubling Measure Hausdorff-Kantorovich Metric Iterated Function System |
title_short |
Gradual doubling property of Hutchinson orbits |
title_full |
Gradual doubling property of Hutchinson orbits |
title_fullStr |
Gradual doubling property of Hutchinson orbits |
title_full_unstemmed |
Gradual doubling property of Hutchinson orbits |
title_sort |
Gradual doubling property of Hutchinson orbits |
dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Carena, Marilina Iaffei, Bibiana Raquel |
author |
Aimar, Hugo Alejandro |
author_facet |
Aimar, Hugo Alejandro Carena, Marilina Iaffei, Bibiana Raquel |
author_role |
author |
author2 |
Carena, Marilina Iaffei, Bibiana Raquel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Metric Space Doubling Measure Hausdorff-Kantorovich Metric Iterated Function System |
topic |
Metric Space Doubling Measure Hausdorff-Kantorovich Metric Iterated Function System |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The classical self-similar fractals can be obtained as xed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, have both the doubling property. We prove that the elements of Hutchinson orbits satisfy the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina Fil: Carena, Marilina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnol.conicet - Santa Fe. Instituto de Matematica Aplicada "litoral"; Argentina |
description |
The classical self-similar fractals can be obtained as xed points of the iteration technique introduced by Hutchinson. The well known results of Mosco show that typically the limit fractal equipped with the invariant measure is a (normal) space of homogeneous type. But the doubling property along this iteration is generally not preserved even when the starting point, and of course the limit point, have both the doubling property. We prove that the elements of Hutchinson orbits satisfy the doubling property except perhaps for radii which decrease to zero as the step of the iteration grows, and in this sense, we say that the doubling property of the limit is achieved gradually. We use this result to prove the uniform upper doubling property of the orbits. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13882 Aimar, Hugo Alejandro; Carena, Marilina; Iaffei, Bibiana Raquel; Gradual doubling property of Hutchinson orbits; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 11-2015; 191-205 0011-4642 1572-9141 |
url |
http://hdl.handle.net/11336/13882 |
identifier_str_mv |
Aimar, Hugo Alejandro; Carena, Marilina; Iaffei, Bibiana Raquel; Gradual doubling property of Hutchinson orbits; Springer Heidelberg; Czechoslovak Mathematical Journal; 65; 1; 11-2015; 191-205 0011-4642 1572-9141 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10587-015-0168-3 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10587-015-0168-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082654929158144 |
score |
13.22299 |