A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem
- Autores
- Ivanissevich, María Laura; Cofiño, Antonio S.; Gutiérrez, José Manuel
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations) which approximates a given image with a certain prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method. We also present an interactive Matlab program implementing the algorithms described in the paper
I Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
evolutive algorithms
iterated function system (IFS)
Fractals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23456
Ver los metadatos del registro completo
id |
SEDICI_36de46ce8a9bb7b0cc00d09974dfa44e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23456 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problemIvanissevich, María LauraCofiño, Antonio S.Gutiérrez, José ManuelCiencias Informáticasevolutive algorithmsiterated function system (IFS)FractalsThe key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations) which approximates a given image with a certain prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method. We also present an interactive Matlab program implementing the algorithms described in the paperI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2000-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23456enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:26Zoai:sedici.unlp.edu.ar:10915/23456Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:26.867SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
title |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
spellingShingle |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem Ivanissevich, María Laura Ciencias Informáticas evolutive algorithms iterated function system (IFS) Fractals |
title_short |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
title_full |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
title_fullStr |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
title_full_unstemmed |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
title_sort |
A comparison of diferent evolutive niching strategies for identifying a set of selfsimilar contractions for the IFS inverse problem |
dc.creator.none.fl_str_mv |
Ivanissevich, María Laura Cofiño, Antonio S. Gutiérrez, José Manuel |
author |
Ivanissevich, María Laura |
author_facet |
Ivanissevich, María Laura Cofiño, Antonio S. Gutiérrez, José Manuel |
author_role |
author |
author2 |
Cofiño, Antonio S. Gutiérrez, José Manuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas evolutive algorithms iterated function system (IFS) Fractals |
topic |
Ciencias Informáticas evolutive algorithms iterated function system (IFS) Fractals |
dc.description.none.fl_txt_mv |
The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations) which approximates a given image with a certain prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method. We also present an interactive Matlab program implementing the algorithms described in the paper I Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The key problem in fractal image compression is that of obtaining the IFS code (a set of linear transformations) which approximates a given image with a certain prescribed accuracy (inverse IFS problem). In this paper, we analyze and compare the performance of sharing and crowding niching techniques for identifying optimal selfsimilar transformations likely to represent a selfsimilar area within the image. The best results are found using the deterministic crowding method. We also present an interactive Matlab program implementing the algorithms described in the paper |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23456 |
url |
http://sedici.unlp.edu.ar/handle/10915/23456 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615813772869632 |
score |
13.070432 |