Uniform approximation of Muckenhoupt weights on fractals by simple functions

Autores
Carena, Marilina; Toschi, Marisa
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an Ap-Muckenhoupt weight on a fractal obtained as the attractor of an iterated function system, we construct a sequence of approximating weights, which are simple functions belonging uniformly to the Ap class on the approximating spaces.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
MUCKENHOUPT WEIGHTS
ITERATED FUNCTION SYSTEMS
WEAK CONVERGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/164940

id CONICETDig_2d5a120a4426f37c024615c20dcb85e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/164940
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Uniform approximation of Muckenhoupt weights on fractals by simple functionsCarena, MarilinaToschi, MarisaMUCKENHOUPT WEIGHTSITERATED FUNCTION SYSTEMSWEAK CONVERGENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an Ap-Muckenhoupt weight on a fractal obtained as the attractor of an iterated function system, we construct a sequence of approximating weights, which are simple functions belonging uniformly to the Ap class on the approximating spaces.Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUnión Matemática Argentina2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/164940Carena, Marilina; Toschi, Marisa; Uniform approximation of Muckenhoupt weights on fractals by simple functions; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 3-2021; 57-660041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v62n1a03info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v62n1a03info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:25:02Zoai:ri.conicet.gov.ar:11336/164940instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:25:02.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Uniform approximation of Muckenhoupt weights on fractals by simple functions
title Uniform approximation of Muckenhoupt weights on fractals by simple functions
spellingShingle Uniform approximation of Muckenhoupt weights on fractals by simple functions
Carena, Marilina
MUCKENHOUPT WEIGHTS
ITERATED FUNCTION SYSTEMS
WEAK CONVERGENCE
title_short Uniform approximation of Muckenhoupt weights on fractals by simple functions
title_full Uniform approximation of Muckenhoupt weights on fractals by simple functions
title_fullStr Uniform approximation of Muckenhoupt weights on fractals by simple functions
title_full_unstemmed Uniform approximation of Muckenhoupt weights on fractals by simple functions
title_sort Uniform approximation of Muckenhoupt weights on fractals by simple functions
dc.creator.none.fl_str_mv Carena, Marilina
Toschi, Marisa
author Carena, Marilina
author_facet Carena, Marilina
Toschi, Marisa
author_role author
author2 Toschi, Marisa
author2_role author
dc.subject.none.fl_str_mv MUCKENHOUPT WEIGHTS
ITERATED FUNCTION SYSTEMS
WEAK CONVERGENCE
topic MUCKENHOUPT WEIGHTS
ITERATED FUNCTION SYSTEMS
WEAK CONVERGENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given an Ap-Muckenhoupt weight on a fractal obtained as the attractor of an iterated function system, we construct a sequence of approximating weights, which are simple functions belonging uniformly to the Ap class on the approximating spaces.
Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description Given an Ap-Muckenhoupt weight on a fractal obtained as the attractor of an iterated function system, we construct a sequence of approximating weights, which are simple functions belonging uniformly to the Ap class on the approximating spaces.
publishDate 2021
dc.date.none.fl_str_mv 2021-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/164940
Carena, Marilina; Toschi, Marisa; Uniform approximation of Muckenhoupt weights on fractals by simple functions; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 3-2021; 57-66
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/164940
identifier_str_mv Carena, Marilina; Toschi, Marisa; Uniform approximation of Muckenhoupt weights on fractals by simple functions; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 62; 1; 3-2021; 57-66
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v62n1a03
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v62n1a03
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981390367326208
score 12.48226