Countable contraction mappings in metric spaces: Invariant Sets and Measures
- Autores
- Barrozo, María Fernanda; Molter, Ursula Maria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.
Fil: Barrozo, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Countable Iterated Function Systems
Invariant Measure
Atractor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18774
Ver los metadatos del registro completo
id |
CONICETDig_ae823dfd12a4e2a81318fce32c186aff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18774 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Countable contraction mappings in metric spaces: Invariant Sets and MeasuresBarrozo, María FernandaMolter, Ursula MariaCountable Iterated Function SystemsInvariant MeasureAtractorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set.Fil: Barrozo, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaVersita2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18774Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-6021895-1074CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-013-0371-0info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2014.12.issue-4/s11533-013-0371-0/s11533-013-0371-0.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:30Zoai:ri.conicet.gov.ar:11336/18774instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:30.724CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
title |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
spellingShingle |
Countable contraction mappings in metric spaces: Invariant Sets and Measures Barrozo, María Fernanda Countable Iterated Function Systems Invariant Measure Atractor |
title_short |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
title_full |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
title_fullStr |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
title_full_unstemmed |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
title_sort |
Countable contraction mappings in metric spaces: Invariant Sets and Measures |
dc.creator.none.fl_str_mv |
Barrozo, María Fernanda Molter, Ursula Maria |
author |
Barrozo, María Fernanda |
author_facet |
Barrozo, María Fernanda Molter, Ursula Maria |
author_role |
author |
author2 |
Molter, Ursula Maria |
author2_role |
author |
dc.subject.none.fl_str_mv |
Countable Iterated Function Systems Invariant Measure Atractor |
topic |
Countable Iterated Function Systems Invariant Measure Atractor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set. Fil: Barrozo, María Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We consider a complete metric space (X, d) and a countable number of contraction mappings on X, F = {Fi : i ∈ N}. We show the existence of a smallest invariant set (with respect to inclusion) for F. If the maps Fi are of the form Fi(x) = rix + bi on X = R d , we prove a converse of the classic result on contraction mappings, more precisely, there exists a unique bounded invariant set if and only if r = supi ri is strictly smaller than 1. Further, if ρ = {ρk}k∈N is a probability sequence, we show that if there exists an invariant measure for the system (F, ρ), then its support must be precisely this smallest invariant set. If in addition there exists any bounded invariant set, this invariant measure is unique, even though there may be more than one invariant set. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18774 Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-602 1895-1074 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18774 |
identifier_str_mv |
Barrozo, María Fernanda; Molter, Ursula Maria; Countable contraction mappings in metric spaces: Invariant Sets and Measures; Versita; CENTRAL EUROPEAN JOURNAL OF MATHEMATICS - (Print); 12; 4; 4-2014; 593-602 1895-1074 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-013-0371-0 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2014.12.issue-4/s11533-013-0371-0/s11533-013-0371-0.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Versita |
publisher.none.fl_str_mv |
Versita |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980529548296192 |
score |
12.993085 |