Convergence of the iterated Aluthge transform sequence for diagonalizable matrices
- Autores
- Antezana, Jorge Abel; Pujals, Enrique R.; Stojanoff, Demetrio
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an r × r complex matrix T ,ifT = U|T | is the polar decomposition of T , then, the Aluthge transform is defined by Δ(T)=|T |1/2U|T |1/2. Let Δn(T ) denote the n-times iterated Aluthge transform of T ,i.e.Δ0 (T ) = T and Δn(T ) = Δ(Δn-1(T )), n ∈ N. We prove that the sequence {Δn(T )}n∈N converges for every r × r diagonalizable matrix T .We show that the limit Δ∞(·) is a map of class C ∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.
Facultad de Ciencias Exactas - Materia
-
Matemática
Aluthge transform
Polar decomposition
Similarity orbit
Stable manifold theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83247
Ver los metadatos del registro completo
| id |
SEDICI_caac2d0b27c1b603af7039aeade60432 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83247 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Convergence of the iterated Aluthge transform sequence for diagonalizable matricesAntezana, Jorge AbelPujals, Enrique R.Stojanoff, DemetrioMatemáticaAluthge transformPolar decompositionSimilarity orbitStable manifold theoremGiven an r × r complex matrix T ,ifT = U|T | is the polar decomposition of T , then, the Aluthge transform is defined by Δ(T)=|T |1/2U|T |1/2. Let Δn(T ) denote the n-times iterated Aluthge transform of T ,i.e.Δ0 (T ) = T and Δn(T ) = Δ(Δn-1(T )), n ∈ N. We prove that the sequence {Δn(T )}n∈N converges for every r × r diagonalizable matrix T .We show that the limit Δ∞(·) is a map of class C ∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.Facultad de Ciencias Exactas2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf255-278http://sedici.unlp.edu.ar/handle/10915/83247enginfo:eu-repo/semantics/altIdentifier/issn/0001-8708info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2007.05.009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:17:54Zoai:sedici.unlp.edu.ar:10915/83247Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:17:54.484SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| spellingShingle |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices Antezana, Jorge Abel Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| title_short |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_full |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_fullStr |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_full_unstemmed |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_sort |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique R. Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| topic |
Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| dc.description.none.fl_txt_mv |
Given an r × r complex matrix T ,ifT = U|T | is the polar decomposition of T , then, the Aluthge transform is defined by Δ(T)=|T |1/2U|T |1/2. Let Δn(T ) denote the n-times iterated Aluthge transform of T ,i.e.Δ0 (T ) = T and Δn(T ) = Δ(Δn-1(T )), n ∈ N. We prove that the sequence {Δn(T )}n∈N converges for every r × r diagonalizable matrix T .We show that the limit Δ∞(·) is a map of class C ∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues. Facultad de Ciencias Exactas |
| description |
Given an r × r complex matrix T ,ifT = U|T | is the polar decomposition of T , then, the Aluthge transform is defined by Δ(T)=|T |1/2U|T |1/2. Let Δn(T ) denote the n-times iterated Aluthge transform of T ,i.e.Δ0 (T ) = T and Δn(T ) = Δ(Δn-1(T )), n ∈ N. We prove that the sequence {Δn(T )}n∈N converges for every r × r diagonalizable matrix T .We show that the limit Δ∞(·) is a map of class C ∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83247 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83247 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0001-8708 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2007.05.009 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 255-278 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852334170152370176 |
| score |
12.952241 |