Iterated Aluthge transforms: a brief survey

Autores
Antezana, Jorge Abel; Pujals, Enrique R.; Stojanoff, Demetrio
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.
Facultad de Ciencias Exactas
Materia
Matemática
Aluthge transform
stable manifold theorem
similarity orbit
polar decomposition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/156336

id SEDICI_97b2b2effd81e1ec1c1781b77badb51a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/156336
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Iterated Aluthge transforms: a brief surveyAntezana, Jorge AbelPujals, Enrique R.Stojanoff, DemetrioMatemáticaAluthge transformstable manifold theoremsimilarity orbitpolar decompositionGiven an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf29-41http://sedici.unlp.edu.ar/handle/10915/156336enginfo:eu-repo/semantics/altIdentifier/issn/1669-9637info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:42:41Zoai:sedici.unlp.edu.ar:10915/156336Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:42:41.904SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Iterated Aluthge transforms: a brief survey
title Iterated Aluthge transforms: a brief survey
spellingShingle Iterated Aluthge transforms: a brief survey
Antezana, Jorge Abel
Matemática
Aluthge transform
stable manifold theorem
similarity orbit
polar decomposition
title_short Iterated Aluthge transforms: a brief survey
title_full Iterated Aluthge transforms: a brief survey
title_fullStr Iterated Aluthge transforms: a brief survey
title_full_unstemmed Iterated Aluthge transforms: a brief survey
title_sort Iterated Aluthge transforms: a brief survey
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Pujals, Enrique R.
Stojanoff, Demetrio
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Pujals, Enrique R.
Stojanoff, Demetrio
author_role author
author2 Pujals, Enrique R.
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Aluthge transform
stable manifold theorem
similarity orbit
polar decomposition
topic Matemática
Aluthge transform
stable manifold theorem
similarity orbit
polar decomposition
dc.description.none.fl_txt_mv Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.
Facultad de Ciencias Exactas
description Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/156336
url http://sedici.unlp.edu.ar/handle/10915/156336
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1669-9637
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
29-41
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852334638874230784
score 12.952241