Iterated Aluthge transforms: a brief survey
- Autores
- Antezana, Jorge Abel; Pujals, Enrique R.; Stojanoff, Demetrio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.
Facultad de Ciencias Exactas - Materia
-
Matemática
Aluthge transform
stable manifold theorem
similarity orbit
polar decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/156336
Ver los metadatos del registro completo
| id |
SEDICI_97b2b2effd81e1ec1c1781b77badb51a |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/156336 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Iterated Aluthge transforms: a brief surveyAntezana, Jorge AbelPujals, Enrique R.Stojanoff, DemetrioMatemáticaAluthge transformstable manifold theoremsimilarity orbitpolar decompositionGiven an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003.Facultad de Ciencias Exactas2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf29-41http://sedici.unlp.edu.ar/handle/10915/156336enginfo:eu-repo/semantics/altIdentifier/issn/1669-9637info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:42:41Zoai:sedici.unlp.edu.ar:10915/156336Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:42:41.904SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Iterated Aluthge transforms: a brief survey |
| title |
Iterated Aluthge transforms: a brief survey |
| spellingShingle |
Iterated Aluthge transforms: a brief survey Antezana, Jorge Abel Matemática Aluthge transform stable manifold theorem similarity orbit polar decomposition |
| title_short |
Iterated Aluthge transforms: a brief survey |
| title_full |
Iterated Aluthge transforms: a brief survey |
| title_fullStr |
Iterated Aluthge transforms: a brief survey |
| title_full_unstemmed |
Iterated Aluthge transforms: a brief survey |
| title_sort |
Iterated Aluthge transforms: a brief survey |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique R. Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática Aluthge transform stable manifold theorem similarity orbit polar decomposition |
| topic |
Matemática Aluthge transform stable manifold theorem similarity orbit polar decomposition |
| dc.description.none.fl_txt_mv |
Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. Facultad de Ciencias Exactas |
| description |
Given an r × r complex matrix T, if T = U|T| is the polar de- composition of T, then the Aluthge transform is defined by ∆(T) = |T|1/2U|T|1/2. Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0(T) = T and ∆n(T) = ∆(∆n−1(T)), n 2 N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n ∊ N converges for every r ×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/156336 |
| url |
http://sedici.unlp.edu.ar/handle/10915/156336 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1669-9637 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 29-41 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852334638874230784 |
| score |
12.952241 |