Convergence of the iterated Aluthge transform sequence for diagonalizable matrices
- Autores
- Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Pujals, Enrique. Instituto Nacional de Matemática Pura e Aplicada; Brasil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ALUTHGE TRANSFORM
POLAR DECOMPOSITION
SIMILARITY ORBIT
STABLE MANIFOLD THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99841
Ver los metadatos del registro completo
| id |
CONICETDig_0c809faa0ebb3f6a1b099115edb04a00 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99841 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Convergence of the iterated Aluthge transform sequence for diagonalizable matricesAntezana, Jorge AbelPujals, EnriqueStojanoff, DemetrioALUTHGE TRANSFORMPOLAR DECOMPOSITIONSIMILARITY ORBITSTABLE MANIFOLD THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Pujals, Enrique. Instituto Nacional de Matemática Pura e Aplicada; BrasilFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2007-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99841Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Convergence of the iterated Aluthge transform sequence for diagonalizable matrices; Academic Press Inc Elsevier Science; Advances in Mathematics; 216; 1; 1-12-2007; 255-2780001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2007.05.009info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604283info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/journal/advances-in-mathematics/vol/216/issue/1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:39:16Zoai:ri.conicet.gov.ar:11336/99841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:39:16.461CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| spellingShingle |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices Antezana, Jorge Abel ALUTHGE TRANSFORM POLAR DECOMPOSITION SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| title_short |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_full |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_fullStr |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_full_unstemmed |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| title_sort |
Convergence of the iterated Aluthge transform sequence for diagonalizable matrices |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ALUTHGE TRANSFORM POLAR DECOMPOSITION SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| topic |
ALUTHGE TRANSFORM POLAR DECOMPOSITION SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Pujals, Enrique. Instituto Nacional de Matemática Pura e Aplicada; Brasil Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Given an r × r complex matrix T, if T = U | T | is the polar decomposition of T, then, the Aluthge transform is defined byΔ (T) = | T |1 / 2 U | T |1 / 2 . Let Δn (T) denote the n-times iterated Aluthge transform of T, i.e. Δ0 (T) = T and Δn (T) = Δ (Δn - 1 (T)), n ∈ N. We prove that the sequence {Δn (T)}n ∈ N converges for every r × r diagonalizable matrix T. We show that the limit Δ∞ (ṡ) is a map of class C∞ on the similarity orbit of a diagonalizable matrix, and on the (open and dense) set of r × r matrices with r different eigenvalues. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-12-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99841 Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Convergence of the iterated Aluthge transform sequence for diagonalizable matrices; Academic Press Inc Elsevier Science; Advances in Mathematics; 216; 1; 1-12-2007; 255-278 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/99841 |
| identifier_str_mv |
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Convergence of the iterated Aluthge transform sequence for diagonalizable matrices; Academic Press Inc Elsevier Science; Advances in Mathematics; 216; 1; 1-12-2007; 255-278 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2007.05.009 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604283 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/journal/advances-in-mathematics/vol/216/issue/1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335769666977792 |
| score |
12.952241 |