Iterated Aluthge transforms: a brief survey
- Autores
- Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Abstract. Given an r × r complex matrix T, if T = U|T| is the polar decomposition of T, then, the Aluthge transform is defined by ∆ (T) = |T| 1/2U|T| 1/2 . Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0 (T) = T and ∆n(T) = ∆(∆n−1 (T)), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n∈N converges for every r×r matrix T. This result was conjecturated by Jung, Ko and Pearcy in 2003.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Pujals, Enrique. Centro Nacional de Pesquisa Em Energia E Materiais; Brasil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
Aluthge Transform
Stable manifold theorem
Similarity orbit
Polar decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95310
Ver los metadatos del registro completo
| id |
CONICETDig_f1cb92bf926b74ef6fde16c799ee7dcb |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95310 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Iterated Aluthge transforms: a brief surveyAntezana, Jorge AbelPujals, EnriqueStojanoff, DemetrioAluthge TransformStable manifold theoremSimilarity orbitPolar decompositionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Abstract. Given an r × r complex matrix T, if T = U|T| is the polar decomposition of T, then, the Aluthge transform is defined by ∆ (T) = |T| 1/2U|T| 1/2 . Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0 (T) = T and ∆n(T) = ∆(∆n−1 (T)), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n∈N converges for every r×r matrix T. This result was conjecturated by Jung, Ko and Pearcy in 2003.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Pujals, Enrique. Centro Nacional de Pesquisa Em Energia E Materiais; BrasilFil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaUnión Matemática Argentina2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95310Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Iterated Aluthge transforms: a brief survey; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 29-410041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a04.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:34:24Zoai:ri.conicet.gov.ar:11336/95310instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:34:24.532CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Iterated Aluthge transforms: a brief survey |
| title |
Iterated Aluthge transforms: a brief survey |
| spellingShingle |
Iterated Aluthge transforms: a brief survey Antezana, Jorge Abel Aluthge Transform Stable manifold theorem Similarity orbit Polar decomposition |
| title_short |
Iterated Aluthge transforms: a brief survey |
| title_full |
Iterated Aluthge transforms: a brief survey |
| title_fullStr |
Iterated Aluthge transforms: a brief survey |
| title_full_unstemmed |
Iterated Aluthge transforms: a brief survey |
| title_sort |
Iterated Aluthge transforms: a brief survey |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Aluthge Transform Stable manifold theorem Similarity orbit Polar decomposition |
| topic |
Aluthge Transform Stable manifold theorem Similarity orbit Polar decomposition |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Abstract. Given an r × r complex matrix T, if T = U|T| is the polar decomposition of T, then, the Aluthge transform is defined by ∆ (T) = |T| 1/2U|T| 1/2 . Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0 (T) = T and ∆n(T) = ∆(∆n−1 (T)), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n∈N converges for every r×r matrix T. This result was conjecturated by Jung, Ko and Pearcy in 2003. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Pujals, Enrique. Centro Nacional de Pesquisa Em Energia E Materiais; Brasil Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Abstract. Given an r × r complex matrix T, if T = U|T| is the polar decomposition of T, then, the Aluthge transform is defined by ∆ (T) = |T| 1/2U|T| 1/2 . Let ∆n(T) denote the n-times iterated Aluthge transform of T, i.e. ∆0 (T) = T and ∆n(T) = ∆(∆n−1 (T)), n ∈ N. In this paper we make a brief survey on the known properties and applications of the Aluthge trasnsorm, particularly the recent proof of the fact that the sequence {∆n(T)}n∈N converges for every r×r matrix T. This result was conjecturated by Jung, Ko and Pearcy in 2003. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95310 Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Iterated Aluthge transforms: a brief survey; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 29-41 0041-6932 1669-9637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/95310 |
| identifier_str_mv |
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; Iterated Aluthge transforms: a brief survey; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 29-41 0041-6932 1669-9637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a04.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335221695840256 |
| score |
12.952241 |