The iterated Aluthge transforms of a matrix converge
- Autores
- Antezana, Jorge Abel; Pujals, Enrique R.; Stojanoff, Demetrio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.
Facultad de Ciencias Exactas - Materia
-
Matemática
Aluthge transform
Polar decomposition
Similarity orbit
Stable manifold theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84303
Ver los metadatos del registro completo
| id |
SEDICI_c987d40e76a5171151d9edb8f056bf67 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84303 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
The iterated Aluthge transforms of a matrix convergeAntezana, Jorge AbelPujals, Enrique R.Stojanoff, DemetrioMatemáticaAluthge transformPolar decompositionSimilarity orbitStable manifold theoremGiven an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by Δ(T)=|T|<sup>1/2</sup>U|T|<sup>1/2</sup>. Let Δ<sup>n</sup>(T) denote the n-times iterated Aluthge transform of T, i.e., Δ<sup>0</sup>(T)=T and Δ<sup>n</sup>(T)=Δ(Δ<sup>n-1</sup>(T)), nεN. We prove that the sequence {Δ<sup>n</sup>(T)}<sub>nεN</sub> converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.Facultad de Ciencias Exactas2011-01-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1591-1620http://sedici.unlp.edu.ar/handle/10915/84303enginfo:eu-repo/semantics/altIdentifier/issn/0001-8708info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2010.08.012info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:18:19Zoai:sedici.unlp.edu.ar:10915/84303Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:18:19.486SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
The iterated Aluthge transforms of a matrix converge |
| title |
The iterated Aluthge transforms of a matrix converge |
| spellingShingle |
The iterated Aluthge transforms of a matrix converge Antezana, Jorge Abel Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| title_short |
The iterated Aluthge transforms of a matrix converge |
| title_full |
The iterated Aluthge transforms of a matrix converge |
| title_fullStr |
The iterated Aluthge transforms of a matrix converge |
| title_full_unstemmed |
The iterated Aluthge transforms of a matrix converge |
| title_sort |
The iterated Aluthge transforms of a matrix converge |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique R. Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique R. Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| topic |
Matemática Aluthge transform Polar decomposition Similarity orbit Stable manifold theorem |
| dc.description.none.fl_txt_mv |
Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by Δ(T)=|T|<sup>1/2</sup>U|T|<sup>1/2</sup>. Let Δ<sup>n</sup>(T) denote the n-times iterated Aluthge transform of T, i.e., Δ<sup>0</sup>(T)=T and Δ<sup>n</sup>(T)=Δ(Δ<sup>n-1</sup>(T)), nεN. We prove that the sequence {Δ<sup>n</sup>(T)}<sub>nεN</sub> converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function. Facultad de Ciencias Exactas |
| description |
Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by Δ(T)=|T|<sup>1/2</sup>U|T|<sup>1/2</sup>. Let Δ<sup>n</sup>(T) denote the n-times iterated Aluthge transform of T, i.e., Δ<sup>0</sup>(T)=T and Δ<sup>n</sup>(T)=Δ(Δ<sup>n-1</sup>(T)), nεN. We prove that the sequence {Δ<sup>n</sup>(T)}<sub>nεN</sub> converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84303 |
| url |
http://sedici.unlp.edu.ar/handle/10915/84303 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0001-8708 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2010.08.012 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 1591-1620 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852334178683584512 |
| score |
12.952241 |