The iterated Aluthge transforms of a matrix converge
- Autores
- Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universitat Autònoma de Barcelona; España
Fil: Pujals, Enrique. Instituto Nacional de Matemática Pura y Aplicada; Brasil
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ALUTHGE TRANSFORM
POLAR DECOMPOSITION
PRIMARY
SECONDARY
SIMILARITY ORBIT
STABLE MANIFOLD THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88443
Ver los metadatos del registro completo
| id |
CONICETDig_00148de29d3dcc8fc0499190e91c2b31 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88443 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The iterated Aluthge transforms of a matrix convergeAntezana, Jorge AbelPujals, EnriqueStojanoff, DemetrioALUTHGE TRANSFORMPOLAR DECOMPOSITIONPRIMARYSECONDARYSIMILARITY ORBITSTABLE MANIFOLD THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universitat Autònoma de Barcelona; EspañaFil: Pujals, Enrique. Instituto Nacional de Matemática Pura y Aplicada; BrasilFil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88443Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; The iterated Aluthge transforms of a matrix converge; Academic Press Inc Elsevier Science; Advances in Mathematics; 226; 2; 1-2011; 1591-16200001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870810003166info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2010.08.012info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/0711.3727.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:44:48Zoai:ri.conicet.gov.ar:11336/88443instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:44:48.641CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The iterated Aluthge transforms of a matrix converge |
| title |
The iterated Aluthge transforms of a matrix converge |
| spellingShingle |
The iterated Aluthge transforms of a matrix converge Antezana, Jorge Abel ALUTHGE TRANSFORM POLAR DECOMPOSITION PRIMARY SECONDARY SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| title_short |
The iterated Aluthge transforms of a matrix converge |
| title_full |
The iterated Aluthge transforms of a matrix converge |
| title_fullStr |
The iterated Aluthge transforms of a matrix converge |
| title_full_unstemmed |
The iterated Aluthge transforms of a matrix converge |
| title_sort |
The iterated Aluthge transforms of a matrix converge |
| dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author |
Antezana, Jorge Abel |
| author_facet |
Antezana, Jorge Abel Pujals, Enrique Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Pujals, Enrique Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ALUTHGE TRANSFORM POLAR DECOMPOSITION PRIMARY SECONDARY SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| topic |
ALUTHGE TRANSFORM POLAR DECOMPOSITION PRIMARY SECONDARY SIMILARITY ORBIT STABLE MANIFOLD THEOREM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Universitat Autònoma de Barcelona; España Fil: Pujals, Enrique. Instituto Nacional de Matemática Pura y Aplicada; Brasil Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Given an r×r complex matrix T, if T=U|T| is the polar decomposition of T, then, the Aluthge transform is defined by. Δ(T)=|T|1/2U|T|1/2. Let Δn(T) denote the n-times iterated Aluthge transform of T, i.e., Δ0(T)=T and Δn(T)=Δ(Δn-1(T)), nεN. We prove that the sequence {Δn(T)}nεN converges for every r×r matrix T. This result was conjectured by Jung, Ko and Pearcy in 2003. We also analyze the regularity of the limit function. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88443 Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; The iterated Aluthge transforms of a matrix converge; Academic Press Inc Elsevier Science; Advances in Mathematics; 226; 2; 1-2011; 1591-1620 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/88443 |
| identifier_str_mv |
Antezana, Jorge Abel; Pujals, Enrique; Stojanoff, Demetrio; The iterated Aluthge transforms of a matrix converge; Academic Press Inc Elsevier Science; Advances in Mathematics; 226; 2; 1-2011; 1591-1620 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870810003166 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2010.08.012 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/0711.3727.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335361371406336 |
| score |
12.952241 |