Homogeneous manifolds from noncommutative measure spaces
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernán; Larotonda, G.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖p = τ (|x|p)1/p, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance dp induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over dp that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance dO, p. We prove that the distances over dp and dO, p coincide. Based on this fact, we show that the metric space (O, dp) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Finite von Neumann algebra
Finsler metric
Geodesic
Homogeneous space
p-Norm
Path metric space
Quotient metric
Unitary group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82479
Ver los metadatos del registro completo
id |
SEDICI_c6ba3887d76dda8cf1bfab3f0995d01b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82479 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Homogeneous manifolds from noncommutative measure spacesAndruchow, EstebanChiumiento, Eduardo HernánLarotonda, G.Ciencias ExactasFinite von Neumann algebraFinsler metricGeodesicHomogeneous spacep-NormPath metric spaceQuotient metricUnitary groupLet M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm.Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf541-558http://sedici.unlp.edu.ar/handle/10915/82479enginfo:eu-repo/semantics/altIdentifier/issn/0022247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:46Zoai:sedici.unlp.edu.ar:10915/82479Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:47.206SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Homogeneous manifolds from noncommutative measure spaces |
title |
Homogeneous manifolds from noncommutative measure spaces |
spellingShingle |
Homogeneous manifolds from noncommutative measure spaces Andruchow, Esteban Ciencias Exactas Finite von Neumann algebra Finsler metric Geodesic Homogeneous space p-Norm Path metric space Quotient metric Unitary group |
title_short |
Homogeneous manifolds from noncommutative measure spaces |
title_full |
Homogeneous manifolds from noncommutative measure spaces |
title_fullStr |
Homogeneous manifolds from noncommutative measure spaces |
title_full_unstemmed |
Homogeneous manifolds from noncommutative measure spaces |
title_sort |
Homogeneous manifolds from noncommutative measure spaces |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernán Larotonda, G. |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernán Larotonda, G. |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernán Larotonda, G. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Finite von Neumann algebra Finsler metric Geodesic Homogeneous space p-Norm Path metric space Quotient metric Unitary group |
topic |
Ciencias Exactas Finite von Neumann algebra Finsler metric Geodesic Homogeneous space p-Norm Path metric space Quotient metric Unitary group |
dc.description.none.fl_txt_mv |
Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm. Facultad de Ciencias Exactas |
description |
Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82479 |
url |
http://sedici.unlp.edu.ar/handle/10915/82479 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0022247X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 541-558 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260350964072448 |
score |
13.13397 |