Homogeneous manifolds from noncommutative measure spaces

Autores
Andruchow, Esteban; Chiumiento, Eduardo Hernán; Larotonda, G.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖p = τ (|x|p)1/p, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance dp induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over dp that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance dO, p. We prove that the distances over dp and dO, p coincide. Based on this fact, we show that the metric space (O, dp) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Finite von Neumann algebra
Finsler metric
Geodesic
Homogeneous space
p-Norm
Path metric space
Quotient metric
Unitary group
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82479

id SEDICI_c6ba3887d76dda8cf1bfab3f0995d01b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82479
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Homogeneous manifolds from noncommutative measure spacesAndruchow, EstebanChiumiento, Eduardo HernánLarotonda, G.Ciencias ExactasFinite von Neumann algebraFinsler metricGeodesicHomogeneous spacep-NormPath metric spaceQuotient metricUnitary groupLet M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm.Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf541-558http://sedici.unlp.edu.ar/handle/10915/82479enginfo:eu-repo/semantics/altIdentifier/issn/0022247Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:46Zoai:sedici.unlp.edu.ar:10915/82479Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:47.206SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Homogeneous manifolds from noncommutative measure spaces
title Homogeneous manifolds from noncommutative measure spaces
spellingShingle Homogeneous manifolds from noncommutative measure spaces
Andruchow, Esteban
Ciencias Exactas
Finite von Neumann algebra
Finsler metric
Geodesic
Homogeneous space
p-Norm
Path metric space
Quotient metric
Unitary group
title_short Homogeneous manifolds from noncommutative measure spaces
title_full Homogeneous manifolds from noncommutative measure spaces
title_fullStr Homogeneous manifolds from noncommutative measure spaces
title_full_unstemmed Homogeneous manifolds from noncommutative measure spaces
title_sort Homogeneous manifolds from noncommutative measure spaces
dc.creator.none.fl_str_mv Andruchow, Esteban
Chiumiento, Eduardo Hernán
Larotonda, G.
author Andruchow, Esteban
author_facet Andruchow, Esteban
Chiumiento, Eduardo Hernán
Larotonda, G.
author_role author
author2 Chiumiento, Eduardo Hernán
Larotonda, G.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Finite von Neumann algebra
Finsler metric
Geodesic
Homogeneous space
p-Norm
Path metric space
Quotient metric
Unitary group
topic Ciencias Exactas
Finite von Neumann algebra
Finsler metric
Geodesic
Homogeneous space
p-Norm
Path metric space
Quotient metric
Unitary group
dc.description.none.fl_txt_mv Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm.
Facultad de Ciencias Exactas
description Let M be a finite von Neumann algebra with a faithful normal trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U<SUB>M</SUB> of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ‖x‖<SUB>p</SUB> = τ (|x|<SUP>p</SUP>)<SUP>1/p</SUP>, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d<SUB>p</SUB> induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance over d<SUB>p</SUB> that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d<SUB>O, p</SUB>. We prove that the distances over d<SUB>p</SUB> and d<SUB>O, p</SUB> coincide. Based on this fact, we show that the metric space (O, d<SUB>p</SUB>) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of U<SUB>M</SUB> with the p-norm.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82479
url http://sedici.unlp.edu.ar/handle/10915/82479
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0022247X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
541-558
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260350964072448
score 13.13397