Larotonda spaces : homogeneous spaces and conditional expectations

Autores
Andruchow, Esteban; Recht, Lázaro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
Fuente
Journal Of Mathematics. Feb. 2016; 27(2): 1-17
https://www.worldscientific.com/toc/ijm/27/02
Materia
Finsler Metric
Geodesic
Homogeneous Space
Unitary Group of A C-Algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/1813

id RIUNGS_43ca71f76ed00c25d5b0df40d37177ea
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/1813
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling Larotonda spaces : homogeneous spaces and conditional expectationsAndruchow, EstebanRecht, LázaroFinsler MetricGeodesicHomogeneous SpaceUnitary Group of A C-AlgebraFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.World Scientific2024-12-23T14:17:58Z2024-12-23T14:17:58Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17.0129-167Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813Journal Of Mathematics. Feb. 2016; 27(2): 1-17https://www.worldscientific.com/toc/ijm/27/02reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1142/S0129167X16500026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-16T15:29:22Zoai:repositorio.ungs.edu.ar:UNGS/1813instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-16 15:29:22.882Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv Larotonda spaces : homogeneous spaces and conditional expectations
title Larotonda spaces : homogeneous spaces and conditional expectations
spellingShingle Larotonda spaces : homogeneous spaces and conditional expectations
Andruchow, Esteban
Finsler Metric
Geodesic
Homogeneous Space
Unitary Group of A C-Algebra
title_short Larotonda spaces : homogeneous spaces and conditional expectations
title_full Larotonda spaces : homogeneous spaces and conditional expectations
title_fullStr Larotonda spaces : homogeneous spaces and conditional expectations
title_full_unstemmed Larotonda spaces : homogeneous spaces and conditional expectations
title_sort Larotonda spaces : homogeneous spaces and conditional expectations
dc.creator.none.fl_str_mv Andruchow, Esteban
Recht, Lázaro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Recht, Lázaro
author_role author
author2 Recht, Lázaro
author2_role author
dc.subject.none.fl_str_mv Finsler Metric
Geodesic
Homogeneous Space
Unitary Group of A C-Algebra
topic Finsler Metric
Geodesic
Homogeneous Space
Unitary Group of A C-Algebra
dc.description.none.fl_txt_mv Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
description Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016
2024-12-23T14:17:58Z
2024-12-23T14:17:58Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17.
0129-167X
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813
identifier_str_mv Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17.
0129-167X
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1142/S0129167X16500026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv Journal Of Mathematics. Feb. 2016; 27(2): 1-17
https://www.worldscientific.com/toc/ijm/27/02
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1846164338962857984
score 12.375692