Larotonda spaces : homogeneous spaces and conditional expectations
- Autores
- Andruchow, Esteban; Recht, Lázaro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.
We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics. - Fuente
- Journal Of Mathematics. Feb. 2016; 27(2): 1-17
https://www.worldscientific.com/toc/ijm/27/02 - Materia
-
Finsler Metric
Geodesic
Homogeneous Space
Unitary Group of A C-Algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1813
Ver los metadatos del registro completo
id |
RIUNGS_43ca71f76ed00c25d5b0df40d37177ea |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1813 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Larotonda spaces : homogeneous spaces and conditional expectationsAndruchow, EstebanRecht, LázaroFinsler MetricGeodesicHomogeneous SpaceUnitary Group of A C-AlgebraFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia.Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.World Scientific2024-12-23T14:17:58Z2024-12-23T14:17:58Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17.0129-167Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813Journal Of Mathematics. Feb. 2016; 27(2): 1-17https://www.worldscientific.com/toc/ijm/27/02reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1142/S0129167X16500026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-16T15:29:22Zoai:repositorio.ungs.edu.ar:UNGS/1813instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-16 15:29:22.882Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Larotonda spaces : homogeneous spaces and conditional expectations |
title |
Larotonda spaces : homogeneous spaces and conditional expectations |
spellingShingle |
Larotonda spaces : homogeneous spaces and conditional expectations Andruchow, Esteban Finsler Metric Geodesic Homogeneous Space Unitary Group of A C-Algebra |
title_short |
Larotonda spaces : homogeneous spaces and conditional expectations |
title_full |
Larotonda spaces : homogeneous spaces and conditional expectations |
title_fullStr |
Larotonda spaces : homogeneous spaces and conditional expectations |
title_full_unstemmed |
Larotonda spaces : homogeneous spaces and conditional expectations |
title_sort |
Larotonda spaces : homogeneous spaces and conditional expectations |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Recht, Lázaro |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Recht, Lázaro |
author_role |
author |
author2 |
Recht, Lázaro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finsler Metric Geodesic Homogeneous Space Unitary Group of A C-Algebra |
topic |
Finsler Metric Geodesic Homogeneous Space Unitary Group of A C-Algebra |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Recht, Lázaro. Universidad de los Andes, Bogotá. Departamento de Matemáticas; Colombia. Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. We define a Larotonda space as a quotient space $P=U_A /U_B$ of the unitary groups of C*-algebras $1\in B\subset A$ with a faithful unital conditional expectation $$ \Phi:A\to B. $$ In particular, $B$ is complemented in $A$, a fact which implies that $P$ has $C^\infty$ differentiable structure, with the topology induced by the norm of $A$. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a $U_A$-invariant Finsler metric in $P$. given a point $\rho\in P$ and a tangent vector $X\in(T P)_\rho$, we consider the problem of wether the geodesic $\delta$ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2024-12-23T14:17:58Z 2024-12-23T14:17:58Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17. 0129-167X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813 |
identifier_str_mv |
Andruchow, E. y Recht, L. (2016). Larotonda spaces: homogeneous spaces and conditional expectations. International Journal Of Mathematics, 27(2), 1-17. 0129-167X |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1813 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1142/S0129167X16500026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
Journal Of Mathematics. Feb. 2016; 27(2): 1-17 https://www.worldscientific.com/toc/ijm/27/02 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1846164338962857984 |
score |
12.375692 |