Larotonda spaces: Homogeneous spaces and conditional expectations

Autores
Andruchow, Esteban; Recht, Lázaro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of C ∗ -algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation Φ : A → B. In particular, B is complemented in A, a fact which implies that P has C∞ differentiable structure, with the topology induced by the norm of A. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a UAinvariant Finsler metric in P. given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento;
Fil: Recht, Lázaro. Universidad de Los Andes, Colombia; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
UNITARY GROUP OF A C-ALGEBRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20210

id CONICETDig_8743817935ce14a62ca6eb327b09e17e
oai_identifier_str oai:ri.conicet.gov.ar:11336/20210
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Larotonda spaces: Homogeneous spaces and conditional expectationsAndruchow, EstebanRecht, LázaroFINSLER METRICGEODESICHOMOGENEOUS SPACEUNITARY GROUP OF A C-ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of C ∗ -algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation Φ : A → B. In particular, B is complemented in A, a fact which implies that P has C∞ differentiable structure, with the topology induced by the norm of A. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a UAinvariant Finsler metric in P. given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento;Fil: Recht, Lázaro. Universidad de Los Andes, Colombia; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorld Scientific2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20210Andruchow, Esteban; Recht, Lázaro; Larotonda spaces: Homogeneous spaces and conditional expectations; World Scientific; International Journal Of Mathematics; 27; 2; 2-2016; 1-17; 16500020129-167XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X16500026info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X16500026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:03Zoai:ri.conicet.gov.ar:11336/20210instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:03.889CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Larotonda spaces: Homogeneous spaces and conditional expectations
title Larotonda spaces: Homogeneous spaces and conditional expectations
spellingShingle Larotonda spaces: Homogeneous spaces and conditional expectations
Andruchow, Esteban
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
UNITARY GROUP OF A C-ALGEBRA
title_short Larotonda spaces: Homogeneous spaces and conditional expectations
title_full Larotonda spaces: Homogeneous spaces and conditional expectations
title_fullStr Larotonda spaces: Homogeneous spaces and conditional expectations
title_full_unstemmed Larotonda spaces: Homogeneous spaces and conditional expectations
title_sort Larotonda spaces: Homogeneous spaces and conditional expectations
dc.creator.none.fl_str_mv Andruchow, Esteban
Recht, Lázaro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Recht, Lázaro
author_role author
author2 Recht, Lázaro
author2_role author
dc.subject.none.fl_str_mv FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
UNITARY GROUP OF A C-ALGEBRA
topic FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
UNITARY GROUP OF A C-ALGEBRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of C ∗ -algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation Φ : A → B. In particular, B is complemented in A, a fact which implies that P has C∞ differentiable structure, with the topology induced by the norm of A. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a UAinvariant Finsler metric in P. given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento;
Fil: Recht, Lázaro. Universidad de Los Andes, Colombia; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of C ∗ -algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation Φ : A → B. In particular, B is complemented in A, a fact which implies that P has C∞ differentiable structure, with the topology induced by the norm of A. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a UAinvariant Finsler metric in P. given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20210
Andruchow, Esteban; Recht, Lázaro; Larotonda spaces: Homogeneous spaces and conditional expectations; World Scientific; International Journal Of Mathematics; 27; 2; 2-2016; 1-17; 1650002
0129-167X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20210
identifier_str_mv Andruchow, Esteban; Recht, Lázaro; Larotonda spaces: Homogeneous spaces and conditional expectations; World Scientific; International Journal Of Mathematics; 27; 2; 2-2016; 1-17; 1650002
0129-167X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129167X16500026
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129167X16500026
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979855997599744
score 12.993085