Homogeneous manifolds from noncommutative measure spaces
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
FINITE VON NEUMANN ALGEBRA
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
PATH METRIC SPACE
P-NORM
QUOTIENT METRIC
UNITARY GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111559
Ver los metadatos del registro completo
id |
CONICETDig_8ed425806ace4e12e05afbc2d29e4eda |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111559 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Homogeneous manifolds from noncommutative measure spacesAndruchow, EstebanChiumiento, Eduardo HernanLarotonda, Gabriel AndrésFINITE VON NEUMANN ALGEBRAFINSLER METRICGEODESICHOMOGENEOUS SPACEPATH METRIC SPACEP-NORMQUOTIENT METRICUNITARY GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaAcademic Press Inc Elsevier Science2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111559Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-5580022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:59Zoai:ri.conicet.gov.ar:11336/111559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:59.607CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Homogeneous manifolds from noncommutative measure spaces |
title |
Homogeneous manifolds from noncommutative measure spaces |
spellingShingle |
Homogeneous manifolds from noncommutative measure spaces Andruchow, Esteban FINITE VON NEUMANN ALGEBRA FINSLER METRIC GEODESIC HOMOGENEOUS SPACE PATH METRIC SPACE P-NORM QUOTIENT METRIC UNITARY GROUP |
title_short |
Homogeneous manifolds from noncommutative measure spaces |
title_full |
Homogeneous manifolds from noncommutative measure spaces |
title_fullStr |
Homogeneous manifolds from noncommutative measure spaces |
title_full_unstemmed |
Homogeneous manifolds from noncommutative measure spaces |
title_sort |
Homogeneous manifolds from noncommutative measure spaces |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernan Larotonda, Gabriel Andrés |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernan Larotonda, Gabriel Andrés |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernan Larotonda, Gabriel Andrés |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FINITE VON NEUMANN ALGEBRA FINSLER METRIC GEODESIC HOMOGENEOUS SPACE PATH METRIC SPACE P-NORM QUOTIENT METRIC UNITARY GROUP |
topic |
FINITE VON NEUMANN ALGEBRA FINSLER METRIC GEODESIC HOMOGENEOUS SPACE PATH METRIC SPACE P-NORM QUOTIENT METRIC UNITARY GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111559 Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111559 |
identifier_str_mv |
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980558258307072 |
score |
12.993085 |