Homogeneous manifolds from noncommutative measure spaces

Autores
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Materia
FINITE VON NEUMANN ALGEBRA
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
PATH METRIC SPACE
P-NORM
QUOTIENT METRIC
UNITARY GROUP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111559

id CONICETDig_8ed425806ace4e12e05afbc2d29e4eda
oai_identifier_str oai:ri.conicet.gov.ar:11336/111559
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Homogeneous manifolds from noncommutative measure spacesAndruchow, EstebanChiumiento, Eduardo HernanLarotonda, Gabriel AndrésFINITE VON NEUMANN ALGEBRAFINSLER METRICGEODESICHOMOGENEOUS SPACEPATH METRIC SPACEP-NORMQUOTIENT METRICUNITARY GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaAcademic Press Inc Elsevier Science2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111559Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-5580022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:59Zoai:ri.conicet.gov.ar:11336/111559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:59.607CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Homogeneous manifolds from noncommutative measure spaces
title Homogeneous manifolds from noncommutative measure spaces
spellingShingle Homogeneous manifolds from noncommutative measure spaces
Andruchow, Esteban
FINITE VON NEUMANN ALGEBRA
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
PATH METRIC SPACE
P-NORM
QUOTIENT METRIC
UNITARY GROUP
title_short Homogeneous manifolds from noncommutative measure spaces
title_full Homogeneous manifolds from noncommutative measure spaces
title_fullStr Homogeneous manifolds from noncommutative measure spaces
title_full_unstemmed Homogeneous manifolds from noncommutative measure spaces
title_sort Homogeneous manifolds from noncommutative measure spaces
dc.creator.none.fl_str_mv Andruchow, Esteban
Chiumiento, Eduardo Hernan
Larotonda, Gabriel Andrés
author Andruchow, Esteban
author_facet Andruchow, Esteban
Chiumiento, Eduardo Hernan
Larotonda, Gabriel Andrés
author_role author
author2 Chiumiento, Eduardo Hernan
Larotonda, Gabriel Andrés
author2_role author
author
dc.subject.none.fl_str_mv FINITE VON NEUMANN ALGEBRA
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
PATH METRIC SPACE
P-NORM
QUOTIENT METRIC
UNITARY GROUP
topic FINITE VON NEUMANN ALGEBRA
FINSLER METRIC
GEODESIC
HOMOGENEOUS SPACE
PATH METRIC SPACE
P-NORM
QUOTIENT METRIC
UNITARY GROUP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
description Let M be a finite von Neumann algebra with a faithful trace τ. In this paper we study metric geometry of homogeneous spaces O of the unitary group U of M, endowed with a Finsler quotient metric induced by the p-norms of τ, ||x||_p=τ(|x|^p)^{1/p}, p ≥ 1. The main results include the following. The unitary group carries on a rectifiable distance d_p induced by measuring the length of curves with the p-norm. If we identify O as a quotient of groups, then there is a natural quotient distance d_p that metrizes the quotient topology. On the other hand, the Finsler quotient metric defined in O provides a way to measure curves, and therefore, there is an associated rectifiable distance d_{O,p}$,. For p ≥2, we prove that the distances d_p and d_{O , p} coincide. Based on this fact, we show that the metric space (O,d_p) is a complete path metric space. The other problem treated in this article is the existence of metric geodesics, or curves of minimal length, in O. We give two abstract partial results in this direction. The first concerns the initial values problem and the second the fixed endpoints problem. We show how these results apply to several examples. In the process, we improve some results about the metric geometry of UM with the p-norm.
publishDate 2010
dc.date.none.fl_str_mv 2010-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111559
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111559
identifier_str_mv Andruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Homogeneous manifolds from noncommutative measure spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 365; 2; 5-2010; 541-558
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2009.11.024
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X09009640
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980558258307072
score 12.993085