Metric geometry of infinite dimensional Lie groups and their homogeneous spaces
- Autores
- Larotonda, Gabriel Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient M≃G/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.
Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
LIE GROUP
BANACH SPACE
FINSLER METRIC
HOMOGENEOUS SPACE
QUOTIENT METRIC
BI-INVARIANT METRIC
GEODESIC
ONE-PARAMETER GROUP
DIFFEOMORPHISM GROUP
LOOP GROUP
OPERATOR ALGEBRA
OPERATOR IDEAL
UNITARY GROUP - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/107581
Ver los metadatos del registro completo
id |
CONICETDig_785c53c1aa6bfcf7388f4700c9085ec8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/107581 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Metric geometry of infinite dimensional Lie groups and their homogeneous spacesLarotonda, Gabriel AndrésLIE GROUPBANACH SPACEFINSLER METRICHOMOGENEOUS SPACEQUOTIENT METRICBI-INVARIANT METRICGEODESICONE-PARAMETER GROUPDIFFEOMORPHISM GROUPLOOP GROUPOPERATOR ALGEBRAOPERATOR IDEALUNITARY GROUPhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient M≃G/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaDe Gruyter2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/107581Larotonda, Gabriel Andrés; Metric geometry of infinite dimensional Lie groups and their homogeneous spaces; De Gruyter; Forum Mathematicum; 31; 6; 9-2019; 1567-16050933-77411435-5337CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/form/31/6/article-p1567.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2019-0127info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1805.02631info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:09Zoai:ri.conicet.gov.ar:11336/107581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:09.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
title |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
spellingShingle |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces Larotonda, Gabriel Andrés LIE GROUP BANACH SPACE FINSLER METRIC HOMOGENEOUS SPACE QUOTIENT METRIC BI-INVARIANT METRIC GEODESIC ONE-PARAMETER GROUP DIFFEOMORPHISM GROUP LOOP GROUP OPERATOR ALGEBRA OPERATOR IDEAL UNITARY GROUP |
title_short |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
title_full |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
title_fullStr |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
title_full_unstemmed |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
title_sort |
Metric geometry of infinite dimensional Lie groups and their homogeneous spaces |
dc.creator.none.fl_str_mv |
Larotonda, Gabriel Andrés |
author |
Larotonda, Gabriel Andrés |
author_facet |
Larotonda, Gabriel Andrés |
author_role |
author |
dc.subject.none.fl_str_mv |
LIE GROUP BANACH SPACE FINSLER METRIC HOMOGENEOUS SPACE QUOTIENT METRIC BI-INVARIANT METRIC GEODESIC ONE-PARAMETER GROUP DIFFEOMORPHISM GROUP LOOP GROUP OPERATOR ALGEBRA OPERATOR IDEAL UNITARY GROUP |
topic |
LIE GROUP BANACH SPACE FINSLER METRIC HOMOGENEOUS SPACE QUOTIENT METRIC BI-INVARIANT METRIC GEODESIC ONE-PARAMETER GROUP DIFFEOMORPHISM GROUP LOOP GROUP OPERATOR ALGEBRA OPERATOR IDEAL UNITARY GROUP |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient M≃G/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds. Fil: Larotonda, Gabriel Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient M≃G/K. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/107581 Larotonda, Gabriel Andrés; Metric geometry of infinite dimensional Lie groups and their homogeneous spaces; De Gruyter; Forum Mathematicum; 31; 6; 9-2019; 1567-1605 0933-7741 1435-5337 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/107581 |
identifier_str_mv |
Larotonda, Gabriel Andrés; Metric geometry of infinite dimensional Lie groups and their homogeneous spaces; De Gruyter; Forum Mathematicum; 31; 6; 9-2019; 1567-1605 0933-7741 1435-5337 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/form/31/6/article-p1567.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/forum-2019-0127 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1805.02631 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981042138382336 |
score |
12.48226 |