Examples of homogeneous manifolds with uniformly bounded metric projection
- Autores
- Chiumiento, Eduardo Hernán
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.
Facultad de Ciencias Exactas
Consejo Nacional de Investigaciones Científicas y Técnicas - Materia
-
Matemática
Finite von Neumann algebra
Metric projection
Homogeneous space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/100354
Ver los metadatos del registro completo
id |
SEDICI_95125b08012bc9870f4ad09d9772c6da |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/100354 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Examples of homogeneous manifolds with uniformly bounded metric projectionChiumiento, Eduardo HernánMatemáticaFinite von Neumann algebraMetric projectionHomogeneous spaceLet M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnicas2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf13-23http://sedici.unlp.edu.ar/handle/10915/100354enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/18935info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdfinfo:eu-repo/semantics/altIdentifier/hdl/11336/18935info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:53:16Zoai:sedici.unlp.edu.ar:10915/100354Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:53:16.522SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title |
Examples of homogeneous manifolds with uniformly bounded metric projection |
spellingShingle |
Examples of homogeneous manifolds with uniformly bounded metric projection Chiumiento, Eduardo Hernán Matemática Finite von Neumann algebra Metric projection Homogeneous space |
title_short |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_full |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_fullStr |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_full_unstemmed |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_sort |
Examples of homogeneous manifolds with uniformly bounded metric projection |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernán |
author |
Chiumiento, Eduardo Hernán |
author_facet |
Chiumiento, Eduardo Hernán |
author_role |
author |
dc.subject.none.fl_str_mv |
Matemática Finite von Neumann algebra Metric projection Homogeneous space |
topic |
Matemática Finite von Neumann algebra Metric projection Homogeneous space |
dc.description.none.fl_txt_mv |
Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type. Facultad de Ciencias Exactas Consejo Nacional de Investigaciones Científicas y Técnicas |
description |
Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/100354 |
url |
http://sedici.unlp.edu.ar/handle/10915/100354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/18935 info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdf info:eu-repo/semantics/altIdentifier/hdl/11336/18935 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 13-23 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260415766069248 |
score |
13.13397 |