Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions

Autores
Durán, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Dirichlet problem
Green function
Calderón-Zygmund theory
weighted Sobolev space
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/146795

id SEDICI_af150ccef7687770c8fe48cca556c904
oai_identifier_str oai:sedici.unlp.edu.ar:10915/146795
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditionsDurán, Ricardo GuillermoSanmartino, MarcelaToschi, MarisaCiencias ExactasDirichlet problemGreen functionCalderón-Zygmund theoryweighted Sobolev spaceLet u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf339-349http://sedici.unlp.edu.ar/handle/10915/146795enginfo:eu-repo/semantics/altIdentifier/issn/1672-4070info:eu-repo/semantics/altIdentifier/issn/1573-8175info:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:11Zoai:sedici.unlp.edu.ar:10915/146795Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:12.083SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
title Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
spellingShingle Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
Durán, Ricardo Guillermo
Ciencias Exactas
Dirichlet problem
Green function
Calderón-Zygmund theory
weighted Sobolev space
title_short Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
title_full Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
title_fullStr Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
title_full_unstemmed Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
title_sort Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
dc.creator.none.fl_str_mv Durán, Ricardo Guillermo
Sanmartino, Marcela
Toschi, Marisa
author Durán, Ricardo Guillermo
author_facet Durán, Ricardo Guillermo
Sanmartino, Marcela
Toschi, Marisa
author_role author
author2 Sanmartino, Marcela
Toschi, Marisa
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Dirichlet problem
Green function
Calderón-Zygmund theory
weighted Sobolev space
topic Ciencias Exactas
Dirichlet problem
Green function
Calderón-Zygmund theory
weighted Sobolev space
dc.description.none.fl_txt_mv Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .
Facultad de Ciencias Exactas
description Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/146795
url http://sedici.unlp.edu.ar/handle/10915/146795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1672-4070
info:eu-repo/semantics/altIdentifier/issn/1573-8175
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
339-349
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616201188147200
score 13.070432