Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions
- Autores
- Durán, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Dirichlet problem
Green function
Calderón-Zygmund theory
weighted Sobolev space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/146795
Ver los metadatos del registro completo
id |
SEDICI_af150ccef7687770c8fe48cca556c904 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/146795 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditionsDurán, Ricardo GuillermoSanmartino, MarcelaToschi, MarisaCiencias ExactasDirichlet problemGreen functionCalderón-Zygmund theoryweighted Sobolev spaceLet u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p .Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf339-349http://sedici.unlp.edu.ar/handle/10915/146795enginfo:eu-repo/semantics/altIdentifier/issn/1672-4070info:eu-repo/semantics/altIdentifier/issn/1573-8175info:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:11Zoai:sedici.unlp.edu.ar:10915/146795Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:12.083SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
title |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
spellingShingle |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions Durán, Ricardo Guillermo Ciencias Exactas Dirichlet problem Green function Calderón-Zygmund theory weighted Sobolev space |
title_short |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
title_full |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
title_fullStr |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
title_full_unstemmed |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
title_sort |
Weighted a priori estimates for solution of (−Δ)m u = f with homogeneous dirichlet conditions |
dc.creator.none.fl_str_mv |
Durán, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author |
Durán, Ricardo Guillermo |
author_facet |
Durán, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author_role |
author |
author2 |
Sanmartino, Marcela Toschi, Marisa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Dirichlet problem Green function Calderón-Zygmund theory weighted Sobolev space |
topic |
Ciencias Exactas Dirichlet problem Green function Calderón-Zygmund theory weighted Sobolev space |
dc.description.none.fl_txt_mv |
Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p . Facultad de Ciencias Exactas |
description |
Let u be a weak solution of (−Δ)m u = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ R n. Then, the main goal of this paper is to prove the following a priori estimate: ∥u∥W2m,pω(Ω)⩽C∥f∥Lpω(Ω), where ω is a weight in the Muckenhoupt class A p . |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/146795 |
url |
http://sedici.unlp.edu.ar/handle/10915/146795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1672-4070 info:eu-repo/semantics/altIdentifier/issn/1573-8175 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 339-349 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616201188147200 |
score |
13.070432 |