Optimal exponents in weighted estimates without examples
- Autores
- Luque, Teresa Guadalupe; Pérez Moreno, Carlos; Rela, Ezequiel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a general approach for proving the optimality of the exponents on weighted estimates. We show that if an operator T satisfies a bound like ∥ T ∥ Lp(w) ≤ c [w]βAp w ε Ap, then the optimal lower bound for β is closely related to the asymptotic behaviour of the unweighted Lp norm ∥ T ∥ Lp(Rn) as p goes to 1 and +∞. By combining these results with the known weighted inequalities, we derive the sharpness of the exponents, without building any specific example, for a wide class of operators including maximaltype, Caldeŕon-Zygmund and fractional operators. In particular, we obtain a lower bound for the best possible exponent for Bochner- Riesz multipliers.We also present a new result concerning a continuum family of maximal operators on the scale of logarithmic Orlicz functions. Further, our method allows to consider in a unified way maximal operators defined over very general Muckenhoupt bases.
Fil: Luque, Teresa Guadalupe. University of Birmingham; Reino Unido
Fil: Pérez Moreno, Carlos. Universidad del País Vasco; España
Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Muckenhoupt weights
Calderon-Zygmund operators
Maximal functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160873
Ver los metadatos del registro completo
id |
CONICETDig_e0ffb13812f790c14a97a67f13c5a029 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160873 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal exponents in weighted estimates without examplesLuque, Teresa GuadalupePérez Moreno, CarlosRela, EzequielMuckenhoupt weightsCalderon-Zygmund operatorsMaximal functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a general approach for proving the optimality of the exponents on weighted estimates. We show that if an operator T satisfies a bound like ∥ T ∥ Lp(w) ≤ c [w]βAp w ε Ap, then the optimal lower bound for β is closely related to the asymptotic behaviour of the unweighted Lp norm ∥ T ∥ Lp(Rn) as p goes to 1 and +∞. By combining these results with the known weighted inequalities, we derive the sharpness of the exponents, without building any specific example, for a wide class of operators including maximaltype, Caldeŕon-Zygmund and fractional operators. In particular, we obtain a lower bound for the best possible exponent for Bochner- Riesz multipliers.We also present a new result concerning a continuum family of maximal operators on the scale of logarithmic Orlicz functions. Further, our method allows to consider in a unified way maximal operators defined over very general Muckenhoupt bases.Fil: Luque, Teresa Guadalupe. University of Birmingham; Reino UnidoFil: Pérez Moreno, Carlos. Universidad del País Vasco; EspañaFil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaInternational Press Boston2015-04-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160873Luque, Teresa Guadalupe; Pérez Moreno, Carlos; Rela, Ezequiel; Optimal exponents in weighted estimates without examples; International Press Boston; Mathematical Research Letters; 22; 1; 13-4-2015; 183-2011073-27801945-001XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2015.v22.n1.a10info:eu-repo/semantics/altIdentifier/url/https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0022/0001/a010/index.phpinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:05Zoai:ri.conicet.gov.ar:11336/160873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:05.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal exponents in weighted estimates without examples |
title |
Optimal exponents in weighted estimates without examples |
spellingShingle |
Optimal exponents in weighted estimates without examples Luque, Teresa Guadalupe Muckenhoupt weights Calderon-Zygmund operators Maximal functions |
title_short |
Optimal exponents in weighted estimates without examples |
title_full |
Optimal exponents in weighted estimates without examples |
title_fullStr |
Optimal exponents in weighted estimates without examples |
title_full_unstemmed |
Optimal exponents in weighted estimates without examples |
title_sort |
Optimal exponents in weighted estimates without examples |
dc.creator.none.fl_str_mv |
Luque, Teresa Guadalupe Pérez Moreno, Carlos Rela, Ezequiel |
author |
Luque, Teresa Guadalupe |
author_facet |
Luque, Teresa Guadalupe Pérez Moreno, Carlos Rela, Ezequiel |
author_role |
author |
author2 |
Pérez Moreno, Carlos Rela, Ezequiel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Muckenhoupt weights Calderon-Zygmund operators Maximal functions |
topic |
Muckenhoupt weights Calderon-Zygmund operators Maximal functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a general approach for proving the optimality of the exponents on weighted estimates. We show that if an operator T satisfies a bound like ∥ T ∥ Lp(w) ≤ c [w]βAp w ε Ap, then the optimal lower bound for β is closely related to the asymptotic behaviour of the unweighted Lp norm ∥ T ∥ Lp(Rn) as p goes to 1 and +∞. By combining these results with the known weighted inequalities, we derive the sharpness of the exponents, without building any specific example, for a wide class of operators including maximaltype, Caldeŕon-Zygmund and fractional operators. In particular, we obtain a lower bound for the best possible exponent for Bochner- Riesz multipliers.We also present a new result concerning a continuum family of maximal operators on the scale of logarithmic Orlicz functions. Further, our method allows to consider in a unified way maximal operators defined over very general Muckenhoupt bases. Fil: Luque, Teresa Guadalupe. University of Birmingham; Reino Unido Fil: Pérez Moreno, Carlos. Universidad del País Vasco; España Fil: Rela, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We present a general approach for proving the optimality of the exponents on weighted estimates. We show that if an operator T satisfies a bound like ∥ T ∥ Lp(w) ≤ c [w]βAp w ε Ap, then the optimal lower bound for β is closely related to the asymptotic behaviour of the unweighted Lp norm ∥ T ∥ Lp(Rn) as p goes to 1 and +∞. By combining these results with the known weighted inequalities, we derive the sharpness of the exponents, without building any specific example, for a wide class of operators including maximaltype, Caldeŕon-Zygmund and fractional operators. In particular, we obtain a lower bound for the best possible exponent for Bochner- Riesz multipliers.We also present a new result concerning a continuum family of maximal operators on the scale of logarithmic Orlicz functions. Further, our method allows to consider in a unified way maximal operators defined over very general Muckenhoupt bases. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160873 Luque, Teresa Guadalupe; Pérez Moreno, Carlos; Rela, Ezequiel; Optimal exponents in weighted estimates without examples; International Press Boston; Mathematical Research Letters; 22; 1; 13-4-2015; 183-201 1073-2780 1945-001X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160873 |
identifier_str_mv |
Luque, Teresa Guadalupe; Pérez Moreno, Carlos; Rela, Ezequiel; Optimal exponents in weighted estimates without examples; International Press Boston; Mathematical Research Letters; 22; 1; 13-4-2015; 183-201 1073-2780 1945-001X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4310/MRL.2015.v22.n1.a10 info:eu-repo/semantics/altIdentifier/url/https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0022/0001/a010/index.php |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269891665592320 |
score |
13.13397 |