Weighted a Priori Estimates for the Poisson Equation

Autores
Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let Ω be a bounded domain in R n with C 2 and let u be a solution of the classical Poisson problem in ; i.e., { u = f in , u = 0 on , where f L p ( ) and is a weight in A p . The main goal of this paper is to prove the following a priori estimate u W 2 , p ( ) C f L p ( ), and to give some applications for weights given by powers of the distance to the boundary.
Fil: Duran, Ricardo. Universidad de Buenos Aires; Argentina
Fil: Sanmartino, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Toschi, Marisa. Universidad Nacional de La Plata; Argentina
Materia
Poisson Equation
Green Function
Calderon Zigmund Theory
Weighted Sobolev Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93243

id CONICETDig_1913107f635e52b6e563ce0543936ae8
oai_identifier_str oai:ri.conicet.gov.ar:11336/93243
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted a Priori Estimates for the Poisson EquationDuran, Ricardo GuillermoSanmartino, MarcelaToschi, MarisaPoisson EquationGreen FunctionCalderon Zigmund TheoryWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Ω be a bounded domain in R n with C 2 and let u be a solution of the classical Poisson problem in ; i.e., { u = f in , u = 0 on , where f L p ( ) and is a weight in A p . The main goal of this paper is to prove the following a priori estimate u W 2 , p ( ) C f L p ( ), and to give some applications for weights given by powers of the distance to the boundary.Fil: Duran, Ricardo. Universidad de Buenos Aires; ArgentinaFil: Sanmartino, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toschi, Marisa. Universidad Nacional de La Plata; ArgentinaIndiana University2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93243Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a Priori Estimates for the Poisson Equation; Indiana University; Indiana University Mathematics Journal; 57; 7; 2-2008; 3463-34780022-2518CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2008/57/3427/3427.xmlinfo:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/24903101?seq=1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:27Zoai:ri.conicet.gov.ar:11336/93243instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:27.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted a Priori Estimates for the Poisson Equation
title Weighted a Priori Estimates for the Poisson Equation
spellingShingle Weighted a Priori Estimates for the Poisson Equation
Duran, Ricardo Guillermo
Poisson Equation
Green Function
Calderon Zigmund Theory
Weighted Sobolev Spaces
title_short Weighted a Priori Estimates for the Poisson Equation
title_full Weighted a Priori Estimates for the Poisson Equation
title_fullStr Weighted a Priori Estimates for the Poisson Equation
title_full_unstemmed Weighted a Priori Estimates for the Poisson Equation
title_sort Weighted a Priori Estimates for the Poisson Equation
dc.creator.none.fl_str_mv Duran, Ricardo Guillermo
Sanmartino, Marcela
Toschi, Marisa
author Duran, Ricardo Guillermo
author_facet Duran, Ricardo Guillermo
Sanmartino, Marcela
Toschi, Marisa
author_role author
author2 Sanmartino, Marcela
Toschi, Marisa
author2_role author
author
dc.subject.none.fl_str_mv Poisson Equation
Green Function
Calderon Zigmund Theory
Weighted Sobolev Spaces
topic Poisson Equation
Green Function
Calderon Zigmund Theory
Weighted Sobolev Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let Ω be a bounded domain in R n with C 2 and let u be a solution of the classical Poisson problem in ; i.e., { u = f in , u = 0 on , where f L p ( ) and is a weight in A p . The main goal of this paper is to prove the following a priori estimate u W 2 , p ( ) C f L p ( ), and to give some applications for weights given by powers of the distance to the boundary.
Fil: Duran, Ricardo. Universidad de Buenos Aires; Argentina
Fil: Sanmartino, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Toschi, Marisa. Universidad Nacional de La Plata; Argentina
description Let Ω be a bounded domain in R n with C 2 and let u be a solution of the classical Poisson problem in ; i.e., { u = f in , u = 0 on , where f L p ( ) and is a weight in A p . The main goal of this paper is to prove the following a priori estimate u W 2 , p ( ) C f L p ( ), and to give some applications for weights given by powers of the distance to the boundary.
publishDate 2008
dc.date.none.fl_str_mv 2008-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93243
Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a Priori Estimates for the Poisson Equation; Indiana University; Indiana University Mathematics Journal; 57; 7; 2-2008; 3463-3478
0022-2518
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93243
identifier_str_mv Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a Priori Estimates for the Poisson Equation; Indiana University; Indiana University Mathematics Journal; 57; 7; 2-2008; 3463-3478
0022-2518
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2008/57/3427/3427.xml
info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/24903101?seq=1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Indiana University
publisher.none.fl_str_mv Indiana University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614518883221504
score 13.070432