Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions
- Autores
- Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class
Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires; Argentina
Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Dirichlet Problem
Green Function
Calderón-Zygmund Theory
Weighted Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75189
Ver los metadatos del registro completo
id |
CONICETDig_196f5b0a9290096e36d7cda67eada484 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75189 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditionsDuran, Ricardo GuillermoSanmartino, MarcelaToschi, MarisaDirichlet ProblemGreen FunctionCalderón-Zygmund TheoryWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt classFil: Duran, Ricardo Guillermo. Universidad de Buenos Aires; ArgentinaFil: Sanmartino, Marcela. Universidad Nacional de La Plata; ArgentinaFil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSpringer2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75189Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions; Springer; Analysis in Theory and Applications; 26; 4; 12-2010; 339-3491672-4070CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:03Zoai:ri.conicet.gov.ar:11336/75189instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:03.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
spellingShingle |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions Duran, Ricardo Guillermo Dirichlet Problem Green Function Calderón-Zygmund Theory Weighted Sobolev Spaces |
title_short |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_full |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_fullStr |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_full_unstemmed |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
title_sort |
Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions |
dc.creator.none.fl_str_mv |
Duran, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author |
Duran, Ricardo Guillermo |
author_facet |
Duran, Ricardo Guillermo Sanmartino, Marcela Toschi, Marisa |
author_role |
author |
author2 |
Sanmartino, Marcela Toschi, Marisa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Dirichlet Problem Green Function Calderón-Zygmund Theory Weighted Sobolev Spaces |
topic |
Dirichlet Problem Green Function Calderón-Zygmund Theory Weighted Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class Fil: Duran, Ricardo Guillermo. Universidad de Buenos Aires; Argentina Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Let u be a weak solution of (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the following a priori estimate: {double pipe}u{double pipe}Wω 2m,p(Ω) ≤ C{double pipe}f{double pipe}Lω p(Ω), where ω is a weight in the Muckenhoupt class |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75189 Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions; Springer; Analysis in Theory and Applications; 26; 4; 12-2010; 339-349 1672-4070 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75189 |
identifier_str_mv |
Duran, Ricardo Guillermo; Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for solution of (-Δ)mu = f with homogeneous dirichlet conditions; Springer; Analysis in Theory and Applications; 26; 4; 12-2010; 339-349 1672-4070 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10496-010-0339-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613986132164608 |
score |
13.070432 |