Weighted a priori estimates with powers of the distance function for elliptic equations
- Autores
- Toschi, Marisa
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let u be a weak solution of the equation (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝn. In this paper, we obtain some estimates for the Green's function associated to this problem. Moreover, under appropriate conditions on p, we prove some weighted Sobolev a priori estimates for the solution u, where the weight is a power of the distance function. This result extends previous work by R. G. Durán and M. Sanmartino ([Indiana Univ. Math. J. 57 (2008), no. 7, 3463-3478] and [Anal. Theory Appl. 26 (2010), no. 4, 339-349]).
Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Dirichlet Function
Green Problems
Weighted Sobolev Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84066
Ver los metadatos del registro completo
id |
CONICETDig_434e311fa52dd117888ed28b572f9663 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84066 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted a priori estimates with powers of the distance function for elliptic equationsToschi, MarisaDirichlet FunctionGreen ProblemsWeighted Sobolev Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let u be a weak solution of the equation (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝn. In this paper, we obtain some estimates for the Green's function associated to this problem. Moreover, under appropriate conditions on p, we prove some weighted Sobolev a priori estimates for the solution u, where the weight is a power of the distance function. This result extends previous work by R. G. Durán and M. Sanmartino ([Indiana Univ. Math. J. 57 (2008), no. 7, 3463-3478] and [Anal. Theory Appl. 26 (2010), no. 4, 339-349]).Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaHeldermann Verlag2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/84066Toschi, Marisa; Weighted a priori estimates with powers of the distance function for elliptic equations; Heldermann Verlag; Georgian Mathematical Journal; 22; 3; 9-2015; 427-4331072-947XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/gmj-2015-0032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:08Zoai:ri.conicet.gov.ar:11336/84066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:09.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates with powers of the distance function for elliptic equations |
title |
Weighted a priori estimates with powers of the distance function for elliptic equations |
spellingShingle |
Weighted a priori estimates with powers of the distance function for elliptic equations Toschi, Marisa Dirichlet Function Green Problems Weighted Sobolev Spaces |
title_short |
Weighted a priori estimates with powers of the distance function for elliptic equations |
title_full |
Weighted a priori estimates with powers of the distance function for elliptic equations |
title_fullStr |
Weighted a priori estimates with powers of the distance function for elliptic equations |
title_full_unstemmed |
Weighted a priori estimates with powers of the distance function for elliptic equations |
title_sort |
Weighted a priori estimates with powers of the distance function for elliptic equations |
dc.creator.none.fl_str_mv |
Toschi, Marisa |
author |
Toschi, Marisa |
author_facet |
Toschi, Marisa |
author_role |
author |
dc.subject.none.fl_str_mv |
Dirichlet Function Green Problems Weighted Sobolev Spaces |
topic |
Dirichlet Function Green Problems Weighted Sobolev Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let u be a weak solution of the equation (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝn. In this paper, we obtain some estimates for the Green's function associated to this problem. Moreover, under appropriate conditions on p, we prove some weighted Sobolev a priori estimates for the solution u, where the weight is a power of the distance function. This result extends previous work by R. G. Durán and M. Sanmartino ([Indiana Univ. Math. J. 57 (2008), no. 7, 3463-3478] and [Anal. Theory Appl. 26 (2010), no. 4, 339-349]). Fil: Toschi, Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
Let u be a weak solution of the equation (-Δ)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ ℝn. In this paper, we obtain some estimates for the Green's function associated to this problem. Moreover, under appropriate conditions on p, we prove some weighted Sobolev a priori estimates for the solution u, where the weight is a power of the distance function. This result extends previous work by R. G. Durán and M. Sanmartino ([Indiana Univ. Math. J. 57 (2008), no. 7, 3463-3478] and [Anal. Theory Appl. 26 (2010), no. 4, 339-349]). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84066 Toschi, Marisa; Weighted a priori estimates with powers of the distance function for elliptic equations; Heldermann Verlag; Georgian Mathematical Journal; 22; 3; 9-2015; 427-433 1072-947X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84066 |
identifier_str_mv |
Toschi, Marisa; Weighted a priori estimates with powers of the distance function for elliptic equations; Heldermann Verlag; Georgian Mathematical Journal; 22; 3; 9-2015; 427-433 1072-947X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/gmj-2015-0032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613711477604352 |
score |
13.070432 |