Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2

Autores
Sanmartino, Marcela; Toschi, Marisa
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I
Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina
Fil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; Argentina
Materia
Dirichlet
Problem
Green
Weighted
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8951

id CONICETDig_4f3cc1adb74c7428d2e2bbad11469638
oai_identifier_str oai:ri.conicet.gov.ar:11336/8951
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2Sanmartino, MarcelaToschi, MarisaDirichletProblemGreenWeightedhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 IFil: Sanmartino, Marcela. Universidad Nacional de La Plata; ArgentinaFil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; ArgentinaMichigan State University Press2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/8951Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-3620147-19371930-1219enginfo:eu-repo/semantics/altIdentifier/url/http://msupress.org/journals/issue/?id=50-21D-5E2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:49Zoai:ri.conicet.gov.ar:11336/8951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:49.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
title Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
spellingShingle Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
Sanmartino, Marcela
Dirichlet
Problem
Green
Weighted
title_short Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
title_full Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
title_fullStr Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
title_full_unstemmed Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
title_sort Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
dc.creator.none.fl_str_mv Sanmartino, Marcela
Toschi, Marisa
author Sanmartino, Marcela
author_facet Sanmartino, Marcela
Toschi, Marisa
author_role author
author2 Toschi, Marisa
author2_role author
dc.subject.none.fl_str_mv Dirichlet
Problem
Green
Weighted
topic Dirichlet
Problem
Green
Weighted
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I
Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina
Fil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; Argentina
description Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8951
Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-362
0147-1937
1930-1219
url http://hdl.handle.net/11336/8951
identifier_str_mv Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-362
0147-1937
1930-1219
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://msupress.org/journals/issue/?id=50-21D-5E2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Michigan State University Press
publisher.none.fl_str_mv Michigan State University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614280832352256
score 13.070432