Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2
- Autores
- Sanmartino, Marcela; Toschi, Marisa
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I
Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina
Fil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; Argentina - Materia
-
Dirichlet
Problem
Green
Weighted - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8951
Ver los metadatos del registro completo
id |
CONICETDig_4f3cc1adb74c7428d2e2bbad11469638 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8951 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2Sanmartino, MarcelaToschi, MarisaDirichletProblemGreenWeightedhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 IFil: Sanmartino, Marcela. Universidad Nacional de La Plata; ArgentinaFil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; ArgentinaMichigan State University Press2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/8951Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-3620147-19371930-1219enginfo:eu-repo/semantics/altIdentifier/url/http://msupress.org/journals/issue/?id=50-21D-5E2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:49Zoai:ri.conicet.gov.ar:11336/8951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:49.918CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
title |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
spellingShingle |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 Sanmartino, Marcela Dirichlet Problem Green Weighted |
title_short |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
title_full |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
title_fullStr |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
title_full_unstemmed |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
title_sort |
Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2 |
dc.creator.none.fl_str_mv |
Sanmartino, Marcela Toschi, Marisa |
author |
Sanmartino, Marcela |
author_facet |
Sanmartino, Marcela Toschi, Marisa |
author_role |
author |
author2 |
Toschi, Marisa |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dirichlet Problem Green Weighted |
topic |
Dirichlet Problem Green Weighted |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I Fil: Sanmartino, Marcela. Universidad Nacional de La Plata; Argentina Fil: Toschi, Marisa. Universidad Nacional del Litoral. Facultad de Cs.economicas. Instituto de Economia Aplicada Litoral; Argentina |
description |
Let be a polygonal domain in R2 and let U be a weak solution of u = f in with Dirichlet boundary condition, where f 2 Lp !( ) and ! is a weight in Ap(R2), 1 < p < 1. We give some estimates of the Green function associated to this problem involving some functions of the distance to the vertices and the angles of . As a consequence, we can prove an a priori estimate for the solution u on the weighted Sobolev spaces W2;p ! ( ), 1 < p < 1. 1 I |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8951 Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-362 0147-1937 1930-1219 |
url |
http://hdl.handle.net/11336/8951 |
identifier_str_mv |
Sanmartino, Marcela; Toschi, Marisa; Weighted a priori estimates for the solution of the Dirichlet problem in polygonal domains in R2; Michigan State University Press; Real Analysis Exchange; 39; 2; 1-2014; 345-362 0147-1937 1930-1219 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://msupress.org/journals/issue/?id=50-21D-5E2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Michigan State University Press |
publisher.none.fl_str_mv |
Michigan State University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614280832352256 |
score |
13.070432 |