Convergence of homogeneous manifolds
- Autores
- Lauret, Jorge Ruben
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Convergence
Homogeneous manifolds
Lie algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/269113
Ver los metadatos del registro completo
id |
CONICETDig_87258a18744006a66f2dc8c9a809af9a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/269113 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of homogeneous manifoldsLauret, Jorge RubenConvergenceHomogeneous manifoldsLie algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269113Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-7270024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jds023info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jds023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:13Zoai:ri.conicet.gov.ar:11336/269113instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:13.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of homogeneous manifolds |
title |
Convergence of homogeneous manifolds |
spellingShingle |
Convergence of homogeneous manifolds Lauret, Jorge Ruben Convergence Homogeneous manifolds Lie algebras |
title_short |
Convergence of homogeneous manifolds |
title_full |
Convergence of homogeneous manifolds |
title_fullStr |
Convergence of homogeneous manifolds |
title_full_unstemmed |
Convergence of homogeneous manifolds |
title_sort |
Convergence of homogeneous manifolds |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben |
author_role |
author |
dc.subject.none.fl_str_mv |
Convergence Homogeneous manifolds Lie algebras |
topic |
Convergence Homogeneous manifolds Lie algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/269113 Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-727 0024-6107 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/269113 |
identifier_str_mv |
Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-727 0024-6107 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jds023 info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jds023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268960813219840 |
score |
13.13397 |