Convergence of homogeneous manifolds

Autores
Lauret, Jorge Ruben
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Convergence
Homogeneous manifolds
Lie algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/269113

id CONICETDig_87258a18744006a66f2dc8c9a809af9a
oai_identifier_str oai:ri.conicet.gov.ar:11336/269113
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of homogeneous manifoldsLauret, Jorge RubenConvergenceHomogeneous manifoldsLie algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaOxford University Press2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/269113Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-7270024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jds023info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jds023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:13Zoai:ri.conicet.gov.ar:11336/269113instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:13.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of homogeneous manifolds
title Convergence of homogeneous manifolds
spellingShingle Convergence of homogeneous manifolds
Lauret, Jorge Ruben
Convergence
Homogeneous manifolds
Lie algebras
title_short Convergence of homogeneous manifolds
title_full Convergence of homogeneous manifolds
title_fullStr Convergence of homogeneous manifolds
title_full_unstemmed Convergence of homogeneous manifolds
title_sort Convergence of homogeneous manifolds
dc.creator.none.fl_str_mv Lauret, Jorge Ruben
author Lauret, Jorge Ruben
author_facet Lauret, Jorge Ruben
author_role author
dc.subject.none.fl_str_mv Convergence
Homogeneous manifolds
Lie algebras
topic Convergence
Homogeneous manifolds
Lie algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/269113
Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-727
0024-6107
CONICET Digital
CONICET
url http://hdl.handle.net/11336/269113
identifier_str_mv Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-727
0024-6107
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jds023
info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jds023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268960813219840
score 13.13397