Examples of homogeneous manifolds with uniformly bounded metric projection
- Autores
- Chiumiento, Eduardo Hernan
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Económicas; Argentina - Materia
-
finite von Neumann algebra
metric projection
homogeneous space - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18935
Ver los metadatos del registro completo
id |
CONICETDig_c4dc30cb5c8e49cee7dfee1713eb6225 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18935 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Examples of homogeneous manifolds with uniformly bounded metric projectionChiumiento, Eduardo Hernanfinite von Neumann algebrametric projectionhomogeneous spacehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Económicas; ArgentinaUnión Matemática Argentina2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18935Chiumiento, Eduardo Hernan; Examples of homogeneous manifolds with uniformly bounded metric projection; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 53; 2; 11-2012; 13-230041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:59Zoai:ri.conicet.gov.ar:11336/18935instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:59.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title |
Examples of homogeneous manifolds with uniformly bounded metric projection |
spellingShingle |
Examples of homogeneous manifolds with uniformly bounded metric projection Chiumiento, Eduardo Hernan finite von Neumann algebra metric projection homogeneous space |
title_short |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_full |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_fullStr |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_full_unstemmed |
Examples of homogeneous manifolds with uniformly bounded metric projection |
title_sort |
Examples of homogeneous manifolds with uniformly bounded metric projection |
dc.creator.none.fl_str_mv |
Chiumiento, Eduardo Hernan |
author |
Chiumiento, Eduardo Hernan |
author_facet |
Chiumiento, Eduardo Hernan |
author_role |
author |
dc.subject.none.fl_str_mv |
finite von Neumann algebra metric projection homogeneous space |
topic |
finite von Neumann algebra metric projection homogeneous space |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Económicas; Argentina |
description |
Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18935 Chiumiento, Eduardo Hernan; Examples of homogeneous manifolds with uniformly bounded metric projection; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 53; 2; 11-2012; 13-23 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18935 |
identifier_str_mv |
Chiumiento, Eduardo Hernan; Examples of homogeneous manifolds with uniformly bounded metric projection; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 53; 2; 11-2012; 13-23 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980236275220480 |
score |
12.993085 |