Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra

Autores
Chiumiento, Eduardo Hernán
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show how this result applies to several examples.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Finite von Neumann algebra
metric geometry
Finsler metric
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/130677

id SEDICI_2243a8e32111dfd2df05444b8f481b0e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/130677
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann AlgebraChiumiento, Eduardo HernánCiencias ExactasMatemáticaFinite von Neumann algebrametric geometryFinsler metricWe study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show how this result applies to several examples.Facultad de Ciencias Exactas2008-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf365-382http://sedici.unlp.edu.ar/handle/10915/130677enginfo:eu-repo/semantics/altIdentifier/issn/0378-620Xinfo:eu-repo/semantics/altIdentifier/issn/1420-8989info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-008-1629-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:37Zoai:sedici.unlp.edu.ar:10915/130677Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:38.007SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
title Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
spellingShingle Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
Chiumiento, Eduardo Hernán
Ciencias Exactas
Matemática
Finite von Neumann algebra
metric geometry
Finsler metric
title_short Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
title_full Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
title_fullStr Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
title_full_unstemmed Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
title_sort Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra
dc.creator.none.fl_str_mv Chiumiento, Eduardo Hernán
author Chiumiento, Eduardo Hernán
author_facet Chiumiento, Eduardo Hernán
author_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Finite von Neumann algebra
metric geometry
Finsler metric
topic Ciencias Exactas
Matemática
Finite von Neumann algebra
metric geometry
Finsler metric
dc.description.none.fl_txt_mv We study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show how this result applies to several examples.
Facultad de Ciencias Exactas
description We study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show how this result applies to several examples.
publishDate 2008
dc.date.none.fl_str_mv 2008-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/130677
url http://sedici.unlp.edu.ar/handle/10915/130677
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0378-620X
info:eu-repo/semantics/altIdentifier/issn/1420-8989
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-008-1629-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
365-382
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616205854310400
score 13.070432