Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
- Autores
- Dalponte Ayastuy, María Nieves; Torres, Diego
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial- temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns.
Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios.
Facultad de Informática - Materia
-
Ciencias Informáticas
Adaptive gamification challenges
Spatial- temporal user profiling
Users behavioural patterns
Desafío de juego adaptativos
Perfilamiento espacio-temporal de usuarios
Patrones de comportamiento de usuario - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/136231
Ver los metadatos del registro completo
| id |
SEDICI_7d0d7c073f6f277de6299e395f5a983c |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/136231 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detectionLudificación adaptativa en sistemas colaborativos de recolección basados en la ubicación: un caso de detección de comportamiento espacio-temporalDalponte Ayastuy, María NievesTorres, DiegoCiencias InformáticasAdaptive gamification challengesSpatial- temporal user profilingUsers behavioural patternsDesafío de juego adaptativosPerfilamiento espacio-temporal de usuariosPatrones de comportamiento de usuarioCollaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial- temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns.Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios.Facultad de Informática2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf69-77http://sedici.unlp.edu.ar/handle/10915/136231enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e05info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T10:12:26Zoai:sedici.unlp.edu.ar:10915/136231Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 10:12:26.363SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection Ludificación adaptativa en sistemas colaborativos de recolección basados en la ubicación: un caso de detección de comportamiento espacio-temporal |
| title |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| spellingShingle |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection Dalponte Ayastuy, María Nieves Ciencias Informáticas Adaptive gamification challenges Spatial- temporal user profiling Users behavioural patterns Desafío de juego adaptativos Perfilamiento espacio-temporal de usuarios Patrones de comportamiento de usuario |
| title_short |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_full |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_fullStr |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_full_unstemmed |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_sort |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| dc.creator.none.fl_str_mv |
Dalponte Ayastuy, María Nieves Torres, Diego |
| author |
Dalponte Ayastuy, María Nieves |
| author_facet |
Dalponte Ayastuy, María Nieves Torres, Diego |
| author_role |
author |
| author2 |
Torres, Diego |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Adaptive gamification challenges Spatial- temporal user profiling Users behavioural patterns Desafío de juego adaptativos Perfilamiento espacio-temporal de usuarios Patrones de comportamiento de usuario |
| topic |
Ciencias Informáticas Adaptive gamification challenges Spatial- temporal user profiling Users behavioural patterns Desafío de juego adaptativos Perfilamiento espacio-temporal de usuarios Patrones de comportamiento de usuario |
| dc.description.none.fl_txt_mv |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial- temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns. Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios. Facultad de Informática |
| description |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial- temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/136231 |
| url |
http://sedici.unlp.edu.ar/handle/10915/136231 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e05 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 69-77 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1849876182588194816 |
| score |
13.011256 |