The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection

Autores
Dalponte Ayastuy, María; Torres, Diego
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.
Materia
Ciencias de la Computación
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11425

id CICBA_e223ca7f1d9b0e3ae26a87d4dcefe1f6
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11425
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detectionDalponte Ayastuy, MaríaTorres, DiegoCiencias de la ComputaciónAdaptive gamification challengesSpatial-temporal user profilingUsers behavioural patternsCollaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11425enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:35Zoai:digital.cic.gba.gob.ar:11746/11425Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:35.359CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
title The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
spellingShingle The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
Dalponte Ayastuy, María
Ciencias de la Computación
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns
title_short The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
title_full The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
title_fullStr The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
title_full_unstemmed The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
title_sort The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
dc.creator.none.fl_str_mv Dalponte Ayastuy, María
Torres, Diego
author Dalponte Ayastuy, María
author_facet Dalponte Ayastuy, María
Torres, Diego
author_role author
author2 Torres, Diego
author2_role author
dc.subject.none.fl_str_mv Ciencias de la Computación
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns
topic Ciencias de la Computación
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns
dc.description.none.fl_txt_mv Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.
description Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11425
url https://digital.cic.gba.gob.ar/handle/11746/11425
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842974772058652672
score 12.993085