The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
- Autores
- Dalponte Ayastuy, María; Torres, Diego
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.
- Materia
-
Ciencias de la Computación
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11425
Ver los metadatos del registro completo
| id |
CICBA_e223ca7f1d9b0e3ae26a87d4dcefe1f6 |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11425 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detectionDalponte Ayastuy, MaríaTorres, DiegoCiencias de la ComputaciónAdaptive gamification challengesSpatial-temporal user profilingUsers behavioural patternsCollaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns.2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11425enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-11-06T09:36:10Zoai:digital.cic.gba.gob.ar:11746/11425Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-11-06 09:36:10.558CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| spellingShingle |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection Dalponte Ayastuy, María Ciencias de la Computación Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
| title_short |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_full |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_fullStr |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_full_unstemmed |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| title_sort |
The use of big data in adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
| dc.creator.none.fl_str_mv |
Dalponte Ayastuy, María Torres, Diego |
| author |
Dalponte Ayastuy, María |
| author_facet |
Dalponte Ayastuy, María Torres, Diego |
| author_role |
author |
| author2 |
Torres, Diego |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias de la Computación Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
| topic |
Ciencias de la Computación Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
| dc.description.none.fl_txt_mv |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns. |
| description |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatial-temporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed four types of behavioral atoms and nine types of users’ behavioral patterns. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
submittedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11425 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/11425 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1848045391988129792 |
| score |
13.087074 |