Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems
- Autores
- Dalponte Ayastuy, María; Fernández, Alejandro; Torres, Diego
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results.
- Materia
-
Ciencias de la Computación e Información
Adaptive Gamification
Multi-criteria Recommender Systems
Clustering-based Collaborative Filtering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/12107
Ver los metadatos del registro completo
| id |
CICBA_03d3bc455bd119708d792799f085a384 |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/12107 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systemsDalponte Ayastuy, MaríaFernández, AlejandroTorres, DiegoCiencias de la Computación e InformaciónAdaptive GamificationMulti-criteria Recommender SystemsClustering-based Collaborative FilteringThis article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results.2023info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12107enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-35930-9_19info:eu-repo/semantics/altIdentifier/isbn/978-3-031-35930-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-23T11:14:16Zoai:digital.cic.gba.gob.ar:11746/12107Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-23 11:14:16.74CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| title |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| spellingShingle |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems Dalponte Ayastuy, María Ciencias de la Computación e Información Adaptive Gamification Multi-criteria Recommender Systems Clustering-based Collaborative Filtering |
| title_short |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| title_full |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| title_fullStr |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| title_full_unstemmed |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| title_sort |
Fits like a game: a multi-criteria adaptive gamification for collaborative location-based collecting systems |
| dc.creator.none.fl_str_mv |
Dalponte Ayastuy, María Fernández, Alejandro Torres, Diego |
| author |
Dalponte Ayastuy, María |
| author_facet |
Dalponte Ayastuy, María Fernández, Alejandro Torres, Diego |
| author_role |
author |
| author2 |
Fernández, Alejandro Torres, Diego |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Adaptive Gamification Multi-criteria Recommender Systems Clustering-based Collaborative Filtering |
| topic |
Ciencias de la Computación e Información Adaptive Gamification Multi-criteria Recommender Systems Clustering-based Collaborative Filtering |
| dc.description.none.fl_txt_mv |
This article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results. |
| description |
This article proposes an adaptive gamification approach based on a Multi-Criteria Recommendation System (MCRS) for Collaborative Location-based Collecting Systems, adapting the gamification to each user, taking into account her preferences and the project’s objectives as a multi-criteria scenario. Specifically, the potentially recommended items are dynamically generated gamification elements, and the recommendation criteria are defined considering two points of view: user preferences and project objectives. Finally, the article includes an evaluation of the proposal and then a discussion of the results. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/12107 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/12107 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-031-35930-9_19 info:eu-repo/semantics/altIdentifier/isbn/978-3-031-35930-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1846783878915686400 |
| score |
12.982451 |