Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification
- Autores
- Dalponte Ayastuy, María; Torres, Diego
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Collaborative location collecting systems (CLCS) are collaborative systems where users collects location-based data. When these systems are gamified and aim to adapt the game elements to each user, it may require a user traveling behavior profile. This work presents two approaches of traveling user behavior profiling: a raw series built up with categorical data that describes the user’s activity in a period, and a timed series that is an enhanced version of the first that includes a representation of the non-activity time frames. The profiling of user traveling behavior can be used in adaptive gamification strategies. The approach is evaluated over a behavioral atoms dataset based on a year of Foursquare check-ins. The results showed that both approaches reflex different aspects of traveling user behavior, and also both could be used in a complementary manner.
- Materia
-
Ciencias de la Computación e Información
User profiling
Adaptive gamification
Collaborative location collecting systems
Dynamic time warping clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11545
Ver los metadatos del registro completo
id |
CICBA_1233cb2ad7f58f2cc0433cf57ae6232b |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11545 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamificationDalponte Ayastuy, MaríaTorres, DiegoCiencias de la Computación e InformaciónUser profilingAdaptive gamificationCollaborative location collecting systemsDynamic time warping clusteringCollaborative location collecting systems (CLCS) are collaborative systems where users collects location-based data. When these systems are gamified and aim to adapt the game elements to each user, it may require a user traveling behavior profile. This work presents two approaches of traveling user behavior profiling: a raw series built up with categorical data that describes the user’s activity in a period, and a timed series that is an enhanced version of the first that includes a representation of the non-activity time frames. The profiling of user traveling behavior can be used in adaptive gamification strategies. The approach is evaluated over a behavioral atoms dataset based on a year of Foursquare check-ins. The results showed that both approaches reflex different aspects of traveling user behavior, and also both could be used in a complementary manner.2021info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11545enginfo:eu-repo/semantics/altIdentifier/doi/10.1145/3471391.3471431info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:08Zoai:digital.cic.gba.gob.ar:11746/11545Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:08.538CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
title |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
spellingShingle |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification Dalponte Ayastuy, María Ciencias de la Computación e Información User profiling Adaptive gamification Collaborative location collecting systems Dynamic time warping clustering |
title_short |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
title_full |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
title_fullStr |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
title_full_unstemmed |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
title_sort |
Relevance of non-activity representation in traveling user behavior profiling for adaptive gamification |
dc.creator.none.fl_str_mv |
Dalponte Ayastuy, María Torres, Diego |
author |
Dalponte Ayastuy, María |
author_facet |
Dalponte Ayastuy, María Torres, Diego |
author_role |
author |
author2 |
Torres, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información User profiling Adaptive gamification Collaborative location collecting systems Dynamic time warping clustering |
topic |
Ciencias de la Computación e Información User profiling Adaptive gamification Collaborative location collecting systems Dynamic time warping clustering |
dc.description.none.fl_txt_mv |
Collaborative location collecting systems (CLCS) are collaborative systems where users collects location-based data. When these systems are gamified and aim to adapt the game elements to each user, it may require a user traveling behavior profile. This work presents two approaches of traveling user behavior profiling: a raw series built up with categorical data that describes the user’s activity in a period, and a timed series that is an enhanced version of the first that includes a representation of the non-activity time frames. The profiling of user traveling behavior can be used in adaptive gamification strategies. The approach is evaluated over a behavioral atoms dataset based on a year of Foursquare check-ins. The results showed that both approaches reflex different aspects of traveling user behavior, and also both could be used in a complementary manner. |
description |
Collaborative location collecting systems (CLCS) are collaborative systems where users collects location-based data. When these systems are gamified and aim to adapt the game elements to each user, it may require a user traveling behavior profile. This work presents two approaches of traveling user behavior profiling: a raw series built up with categorical data that describes the user’s activity in a period, and a timed series that is an enhanced version of the first that includes a representation of the non-activity time frames. The profiling of user traveling behavior can be used in adaptive gamification strategies. The approach is evaluated over a behavioral atoms dataset based on a year of Foursquare check-ins. The results showed that both approaches reflex different aspects of traveling user behavior, and also both could be used in a complementary manner. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11545 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11545 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1145/3471391.3471431 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618602777411584 |
score |
13.070432 |