Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection
- Autores
- Dalponte Ayastuy, María; Torres, Diego
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatialtemporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns.
Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios. - Materia
-
Ciencias de la Computación e Información
Adaptive gamification challenges
Spatial-temporal user profiling
Users behavioural patterns - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11560
Ver los metadatos del registro completo
id |
CICBA_96c8a2b85e517e078a494ae58c383c76 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11560 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detectionDalponte Ayastuy, MaríaTorres, DiegoCiencias de la Computación e InformaciónAdaptive gamification challengesSpatial-temporal user profilingUsers behavioural patternsCollaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatialtemporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns.Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios.2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11560enginfo:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e05info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:54Zoai:digital.cic.gba.gob.ar:11746/11560Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:54.371CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
title |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
spellingShingle |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection Dalponte Ayastuy, María Ciencias de la Computación e Información Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
title_short |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
title_full |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
title_fullStr |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
title_full_unstemmed |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
title_sort |
Adaptive gamification in collaborative location collecting systems: a case of traveling behavior detection |
dc.creator.none.fl_str_mv |
Dalponte Ayastuy, María Torres, Diego |
author |
Dalponte Ayastuy, María |
author_facet |
Dalponte Ayastuy, María Torres, Diego |
author_role |
author |
author2 |
Torres, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
topic |
Ciencias de la Computación e Información Adaptive gamification challenges Spatial-temporal user profiling Users behavioural patterns |
dc.description.none.fl_txt_mv |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatialtemporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns. Los sistemas colaborativos de recolección basados en la ubicación (CLCS, por sus siglas en inglés) son un caso particular de sistemas colaborativos donde una comunidad de usuarios recopila de forma colaborativa datos asociados con una ubicación georreferenciada. La ludificación es una estrategia para convocar participantes a CLCS. Sin embargo, no se puede generalizar debido a los diferentes perfiles de los usuarios, por lo que debe adaptarse a los usuarios y contextos de juego. Una estrategia para adaptar la gamificación en CLCS es crear desafíos de juego adaptados al comportamiento del jugador. Este tipo de adaptación requiere tener un perfil del comportamiento espacio-temporal del usuario y en particular, este trabajo se centra en los primeros pasos para detectar este tipo de perfiles en relación a las actividades espacio-temporales en el contexto de los CLCS. Específicamente, este artículo presenta: (1) una estrategia para detectar patrones de actividades espacio-temporales, (2) un modelo para describir el comportamiento espacio-temporal de los usuarios basado en (1), y una estrategia para detectar patrones de comportamiento de los usuarios, basada en en agrupamiento (clustering) no supervisado. El enfoque se evaluó sobre un conjunto de datos de la aplicación Foursquare. Los resultados mostraron dos tipos de átomos de comportamiento y dos tipos de patrones de comportamiento de los usuarios. |
description |
Collaborative location collecting systems (CLCS) is a particular case of collaborative systems where a community of users collaboratively collects data associated with a geo-referenced location. Gamification is a strategy to convene participants to CLCS. However, it cannot be generalized because of the different users’ profiles, and so it must be tailored to the users and playing contexts. A strategy for adapting gamification in CLCS is to build game challenges tailored to the player’s spatio-temporal behavior. This type of adaptation requires having a user traveling behavior profile. Particularly, this work is focused on the first steps to detect users’ behavioral profiles related to spatialtemporal activities in the context of CLCS. Specifically, this article introduces: (1) a strategy to detect patterns of spatial-temporal activities, (2) a model to describe the spatial-temporal behavior of users based on (1), and a strategy to detect users’ behavioral patterns based on unsupervised clustering. The approach is evaluated over a Foursquare dataset. The results showed two types of behavioral atoms and two types of users’ behavioral patterns. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11560 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11560 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.22.e05 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618584813207552 |
score |
13.070432 |