The construction of π₀ in Axiomatic Cohesion
- Autores
- Menni, Matías
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S.
Facultad de Ciencias Exactas - Materia
-
Matemática
Axiomatic cohesion
Topology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/98344
Ver los metadatos del registro completo
id |
SEDICI_66ed7ae001f77a26c957aec2fa18246e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/98344 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The construction of π₀ in Axiomatic CohesionMenni, MatíasMatemáticaAxiomatic cohesionTopologyWe study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S.Facultad de Ciencias Exactas2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf183-207http://sedici.unlp.edu.ar/handle/10915/98344enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/57061info:eu-repo/semantics/altIdentifier/url/http://tcms.org.ge/Journals/TMJ/Volume10/Volume10_3/Abstract/abstract10_3_9.htmlinfo:eu-repo/semantics/altIdentifier/issn/1512-0139info:eu-repo/semantics/altIdentifier/doi/10.1515/tmj-2017-0108info:eu-repo/semantics/altIdentifier/hdl/11336/57061info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:22:35Zoai:sedici.unlp.edu.ar:10915/98344Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:22:36.095SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The construction of π₀ in Axiomatic Cohesion |
title |
The construction of π₀ in Axiomatic Cohesion |
spellingShingle |
The construction of π₀ in Axiomatic Cohesion Menni, Matías Matemática Axiomatic cohesion Topology |
title_short |
The construction of π₀ in Axiomatic Cohesion |
title_full |
The construction of π₀ in Axiomatic Cohesion |
title_fullStr |
The construction of π₀ in Axiomatic Cohesion |
title_full_unstemmed |
The construction of π₀ in Axiomatic Cohesion |
title_sort |
The construction of π₀ in Axiomatic Cohesion |
dc.creator.none.fl_str_mv |
Menni, Matías |
author |
Menni, Matías |
author_facet |
Menni, Matías |
author_role |
author |
dc.subject.none.fl_str_mv |
Matemática Axiomatic cohesion Topology |
topic |
Matemática Axiomatic cohesion Topology |
dc.description.none.fl_txt_mv |
We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S. Facultad de Ciencias Exactas |
description |
We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E → S, an idempotent monad π0 : E → E such that, for every X in E, π X = 1 if and only if (p* Ω)! : (p* Ω)1 → (p* Ω)X is an isomorphism. For instance, if E is the topological topos (over S = Set), the π0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E → S, p is pre-cohesive if and only if p* : E → S is cartesian closed. In this case, p! = p* π0 : E → S and the category of π0-algebras coincides with the subcategory p* : E → S. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/98344 |
url |
http://sedici.unlp.edu.ar/handle/10915/98344 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/57061 info:eu-repo/semantics/altIdentifier/url/http://tcms.org.ge/Journals/TMJ/Volume10/Volume10_3/Abstract/abstract10_3_9.html info:eu-repo/semantics/altIdentifier/issn/1512-0139 info:eu-repo/semantics/altIdentifier/doi/10.1515/tmj-2017-0108 info:eu-repo/semantics/altIdentifier/hdl/11336/57061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 183-207 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904244352450560 |
score |
12.993085 |