Continuous cohesion over sets
- Autores
- Menni, Matías
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples.
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Axiomatic Cohesion
Topos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46008
Ver los metadatos del registro completo
id |
CONICETDig_fb3cfa7816ea7bc47af2410f0dbc9cd6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46008 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Continuous cohesion over setsMenni, MatíasAxiomatic CohesionToposhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples.Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaMount Allison University2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46008Menni, Matías; Continuous cohesion over sets; Mount Allison University; Theory And Applications Of Categories; 29; 20; 11-2014; 542-5681201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/29/20/29-20.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:29Zoai:ri.conicet.gov.ar:11336/46008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:29.749CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Continuous cohesion over sets |
title |
Continuous cohesion over sets |
spellingShingle |
Continuous cohesion over sets Menni, Matías Axiomatic Cohesion Topos |
title_short |
Continuous cohesion over sets |
title_full |
Continuous cohesion over sets |
title_fullStr |
Continuous cohesion over sets |
title_full_unstemmed |
Continuous cohesion over sets |
title_sort |
Continuous cohesion over sets |
dc.creator.none.fl_str_mv |
Menni, Matías |
author |
Menni, Matías |
author_facet |
Menni, Matías |
author_role |
author |
dc.subject.none.fl_str_mv |
Axiomatic Cohesion Topos |
topic |
Axiomatic Cohesion Topos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples. Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
A pre-cohesive geometric morphism p : E → S satisfies Continuity if the canonical p!(Xp ∗S) → (p!X) S is an iso for every X in E and S in S. We show that if S = Set and E is a presheaf topos then, p satisfies Continuity if and only if it is a quality type. Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. We show that the answer is positive by building some examples. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46008 Menni, Matías; Continuous cohesion over sets; Mount Allison University; Theory And Applications Of Categories; 29; 20; 11-2014; 542-568 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46008 |
identifier_str_mv |
Menni, Matías; Continuous cohesion over sets; Mount Allison University; Theory And Applications Of Categories; 29; 20; 11-2014; 542-568 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/29/20/29-20.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mount Allison University |
publisher.none.fl_str_mv |
Mount Allison University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269803100766208 |
score |
13.13397 |