Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'
- Autores
- Menni, Matías
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E o S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form.
Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
Topos Theory
Axiomatic Cohesion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128722
Ver los metadatos del registro completo
| id |
CONICETDig_feb3e1b90abf1edf833f54366a3e1674 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128722 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'Menni, MatíasTopos TheoryAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E o S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form.Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaRobert Rosebrugh2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128722Menni, Matías; Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'; Robert Rosebrugh; Theory And Applications Of Categories; 34; 25; 9-2019; 714-7351201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/34/25/34-25abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:48:39Zoai:ri.conicet.gov.ar:11336/128722instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:48:39.816CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| title |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| spellingShingle |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' Menni, Matías Topos Theory Axiomatic Cohesion |
| title_short |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| title_full |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| title_fullStr |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| title_full_unstemmed |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| title_sort |
Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality' |
| dc.creator.none.fl_str_mv |
Menni, Matías |
| author |
Menni, Matías |
| author_facet |
Menni, Matías |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Topos Theory Axiomatic Cohesion |
| topic |
Topos Theory Axiomatic Cohesion |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E o S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form. Fil: Menni, Matías. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
| description |
Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E o S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128722 Menni, Matías; Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'; Robert Rosebrugh; Theory And Applications Of Categories; 34; 25; 9-2019; 714-735 1201-561X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/128722 |
| identifier_str_mv |
Menni, Matías; Monic skeleta, Boundaries, Aufhebung, and the meaning of 'one-dimensionality'; Robert Rosebrugh; Theory And Applications Of Categories; 34; 25; 9-2019; 714-735 1201-561X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/34/25/34-25abs.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Robert Rosebrugh |
| publisher.none.fl_str_mv |
Robert Rosebrugh |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978200128290816 |
| score |
13.087074 |