The construction of \pi_0 in Axiomatic Cohesion
- Autores
- Menni, Matías
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of 0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E ! S, an idempotent monad pi_0 : E ightarrow E such that, for every X in E, pi_0 X = 1 if and only if (p^* Omega)^! : (p^* Omega)^1 ightarrow (p^* Omega)^X is an isomorphism. For instance, if E is the topological topos (over S = Set), the pi_0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the pi_0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E ightarrow S, p is pre-cohesive if and only if p^* : S ightarrow Eis cartesian closed. In this case, p_! = p_* pi_0 : E ightarrow S and the category of pi_0-algebras coincides with the subcategory p^* : S ightarrow E.
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Axiomatic Cohesion
Topology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57061
Ver los metadatos del registro completo
id |
CONICETDig_155edcaa30e8961da81743d439091a2d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The construction of \pi_0 in Axiomatic CohesionMenni, MatíasAxiomatic CohesionTopologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of 0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E ! S, an idempotent monad pi_0 : E ightarrow E such that, for every X in E, pi_0 X = 1 if and only if (p^* Omega)^! : (p^* Omega)^1 ightarrow (p^* Omega)^X is an isomorphism. For instance, if E is the topological topos (over S = Set), the pi_0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the pi_0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E ightarrow S, p is pre-cohesive if and only if p^* : S ightarrow Eis cartesian closed. In this case, p_! = p_* pi_0 : E ightarrow S and the category of pi_0-algebras coincides with the subcategory p^* : S ightarrow E.Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaDe Gruyter2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57061Menni, Matías; The construction of \pi_0 in Axiomatic Cohesion; De Gruyter; Tbilisi Mathematical Journal; 10; 3; 11-2017; 183-2071512-0139CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/tmj-2017-0108info:eu-repo/semantics/altIdentifier/url/https://content.sciendo.com/view/journals/tmj/10/3/article-p183.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:47Zoai:ri.conicet.gov.ar:11336/57061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:48.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The construction of \pi_0 in Axiomatic Cohesion |
title |
The construction of \pi_0 in Axiomatic Cohesion |
spellingShingle |
The construction of \pi_0 in Axiomatic Cohesion Menni, Matías Axiomatic Cohesion Topology |
title_short |
The construction of \pi_0 in Axiomatic Cohesion |
title_full |
The construction of \pi_0 in Axiomatic Cohesion |
title_fullStr |
The construction of \pi_0 in Axiomatic Cohesion |
title_full_unstemmed |
The construction of \pi_0 in Axiomatic Cohesion |
title_sort |
The construction of \pi_0 in Axiomatic Cohesion |
dc.creator.none.fl_str_mv |
Menni, Matías |
author |
Menni, Matías |
author_facet |
Menni, Matías |
author_role |
author |
dc.subject.none.fl_str_mv |
Axiomatic Cohesion Topology |
topic |
Axiomatic Cohesion Topology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of 0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E ! S, an idempotent monad pi_0 : E ightarrow E such that, for every X in E, pi_0 X = 1 if and only if (p^* Omega)^! : (p^* Omega)^1 ightarrow (p^* Omega)^X is an isomorphism. For instance, if E is the topological topos (over S = Set), the pi_0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the pi_0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E ightarrow S, p is pre-cohesive if and only if p^* : S ightarrow Eis cartesian closed. In this case, p_! = p_* pi_0 : E ightarrow S and the category of pi_0-algebras coincides with the subcategory p^* : S ightarrow E. Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of 0 as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : E ! S, an idempotent monad pi_0 : E ightarrow E such that, for every X in E, pi_0 X = 1 if and only if (p^* Omega)^! : (p^* Omega)^1 ightarrow (p^* Omega)^X is an isomorphism. For instance, if E is the topological topos (over S = Set), the pi_0-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the pi_0-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : E ightarrow S, p is pre-cohesive if and only if p^* : S ightarrow Eis cartesian closed. In this case, p_! = p_* pi_0 : E ightarrow S and the category of pi_0-algebras coincides with the subcategory p^* : S ightarrow E. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57061 Menni, Matías; The construction of \pi_0 in Axiomatic Cohesion; De Gruyter; Tbilisi Mathematical Journal; 10; 3; 11-2017; 183-207 1512-0139 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57061 |
identifier_str_mv |
Menni, Matías; The construction of \pi_0 in Axiomatic Cohesion; De Gruyter; Tbilisi Mathematical Journal; 10; 3; 11-2017; 183-207 1512-0139 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/tmj-2017-0108 info:eu-repo/semantics/altIdentifier/url/https://content.sciendo.com/view/journals/tmj/10/3/article-p183.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980793475923968 |
score |
12.993085 |