Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness

Autores
Lawvere, F. W.; Menni, Matías
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
Fil: Lawvere, F. W.. State University of New York; Estados Unidos
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Topos
Axiomatic Cohesion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54296

id CONICETDig_05c8e6f96d0177852f55aca87a3b333d
oai_identifier_str oai:ri.conicet.gov.ar:11336/54296
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscretenessLawvere, F. W.Menni, MatíasToposAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.Fil: Lawvere, F. W.. State University of New York; Estados UnidosFil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaRobert Rosebrugh2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54296Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-9321201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:33Zoai:ri.conicet.gov.ar:11336/54296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:33.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
title Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
spellingShingle Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
Lawvere, F. W.
Topos
Axiomatic Cohesion
title_short Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
title_full Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
title_fullStr Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
title_full_unstemmed Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
title_sort Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
dc.creator.none.fl_str_mv Lawvere, F. W.
Menni, Matías
author Lawvere, F. W.
author_facet Lawvere, F. W.
Menni, Matías
author_role author
author2 Menni, Matías
author2_role author
dc.subject.none.fl_str_mv Topos
Axiomatic Cohesion
topic Topos
Axiomatic Cohesion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
Fil: Lawvere, F. W.. State University of New York; Estados Unidos
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
description We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54296
Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932
1201-561X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54296
identifier_str_mv Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932
1201-561X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Robert Rosebrugh
publisher.none.fl_str_mv Robert Rosebrugh
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269645134888960
score 13.13397