Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
- Autores
- Lawvere, F. W.; Menni, Matías
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
Fil: Lawvere, F. W.. State University of New York; Estados Unidos
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Topos
Axiomatic Cohesion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54296
Ver los metadatos del registro completo
| id |
CONICETDig_05c8e6f96d0177852f55aca87a3b333d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54296 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscretenessLawvere, F. W.Menni, MatíasToposAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.Fil: Lawvere, F. W.. State University of New York; Estados UnidosFil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaRobert Rosebrugh2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54296Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-9321201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:16:30Zoai:ri.conicet.gov.ar:11336/54296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:16:30.561CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| title |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| spellingShingle |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness Lawvere, F. W. Topos Axiomatic Cohesion |
| title_short |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| title_full |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| title_fullStr |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| title_full_unstemmed |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| title_sort |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
| dc.creator.none.fl_str_mv |
Lawvere, F. W. Menni, Matías |
| author |
Lawvere, F. W. |
| author_facet |
Lawvere, F. W. Menni, Matías |
| author_role |
author |
| author2 |
Menni, Matías |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Topos Axiomatic Cohesion |
| topic |
Topos Axiomatic Cohesion |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$. Fil: Lawvere, F. W.. State University of New York; Estados Unidos Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina |
| description |
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54296 Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932 1201-561X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/54296 |
| identifier_str_mv |
Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932 1201-561X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.html |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Robert Rosebrugh |
| publisher.none.fl_str_mv |
Robert Rosebrugh |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977732334419968 |
| score |
13.087074 |