Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
- Autores
- Lawvere, F. W.; Menni, Matías
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
Fil: Lawvere, F. W.. State University of New York; Estados Unidos
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Topos
Axiomatic Cohesion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54296
Ver los metadatos del registro completo
id |
CONICETDig_05c8e6f96d0177852f55aca87a3b333d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54296 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscretenessLawvere, F. W.Menni, MatíasToposAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.Fil: Lawvere, F. W.. State University of New York; Estados UnidosFil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaRobert Rosebrugh2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54296Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-9321201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:33Zoai:ri.conicet.gov.ar:11336/54296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:33.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
title |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
spellingShingle |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness Lawvere, F. W. Topos Axiomatic Cohesion |
title_short |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
title_full |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
title_fullStr |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
title_full_unstemmed |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
title_sort |
Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness |
dc.creator.none.fl_str_mv |
Lawvere, F. W. Menni, Matías |
author |
Lawvere, F. W. |
author_facet |
Lawvere, F. W. Menni, Matías |
author_role |
author |
author2 |
Menni, Matías |
author2_role |
author |
dc.subject.none.fl_str_mv |
Topos Axiomatic Cohesion |
topic |
Topos Axiomatic Cohesion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$. Fil: Lawvere, F. W.. State University of New York; Estados Unidos Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54296 Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932 1201-561X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54296 |
identifier_str_mv |
Lawvere, F. W.; Menni, Matías; Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness; Robert Rosebrugh; Theory And Applications Of Categories; 30; 26; 6-2015; 909-932 1201-561X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/30/26/30-26abs.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Robert Rosebrugh |
publisher.none.fl_str_mv |
Robert Rosebrugh |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269645134888960 |
score |
13.13397 |