Sufficient cohesion over atomic toposes

Autores
Menni, Matías
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.
Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Axiomatic Cohesion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34354

id CONICETDig_cd5251658b6eccbc9d987124c990e30c
oai_identifier_str oai:ri.conicet.gov.ar:11336/34354
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sufficient cohesion over atomic toposesMenni, MatíasAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDunod2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34354Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-1491245-530XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:56Zoai:ri.conicet.gov.ar:11336/34354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:57.242CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sufficient cohesion over atomic toposes
title Sufficient cohesion over atomic toposes
spellingShingle Sufficient cohesion over atomic toposes
Menni, Matías
Axiomatic Cohesion
title_short Sufficient cohesion over atomic toposes
title_full Sufficient cohesion over atomic toposes
title_fullStr Sufficient cohesion over atomic toposes
title_full_unstemmed Sufficient cohesion over atomic toposes
title_sort Sufficient cohesion over atomic toposes
dc.creator.none.fl_str_mv Menni, Matías
author Menni, Matías
author_facet Menni, Matías
author_role author
dc.subject.none.fl_str_mv Axiomatic Cohesion
topic Axiomatic Cohesion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.
Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34354
Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-149
1245-530X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34354
identifier_str_mv Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-149
1245-530X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-2.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Dunod
publisher.none.fl_str_mv Dunod
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269190013059072
score 13.13397