Sufficient cohesion over atomic toposes
- Autores
- Menni, Matías
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.
Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
- Axiomatic Cohesion
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34354
Ver los metadatos del registro completo
id |
CONICETDig_cd5251658b6eccbc9d987124c990e30c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34354 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sufficient cohesion over atomic toposesMenni, MatíasAxiomatic Cohesionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions.Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDunod2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34354Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-1491245-530XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:56Zoai:ri.conicet.gov.ar:11336/34354instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:57.242CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sufficient cohesion over atomic toposes |
title |
Sufficient cohesion over atomic toposes |
spellingShingle |
Sufficient cohesion over atomic toposes Menni, Matías Axiomatic Cohesion |
title_short |
Sufficient cohesion over atomic toposes |
title_full |
Sufficient cohesion over atomic toposes |
title_fullStr |
Sufficient cohesion over atomic toposes |
title_full_unstemmed |
Sufficient cohesion over atomic toposes |
title_sort |
Sufficient cohesion over atomic toposes |
dc.creator.none.fl_str_mv |
Menni, Matías |
author |
Menni, Matías |
author_facet |
Menni, Matías |
author_role |
author |
dc.subject.none.fl_str_mv |
Axiomatic Cohesion |
topic |
Axiomatic Cohesion |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions. Fil: Menni, Matías. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let (D, Jat) be an atomic site and j : Sh(D, Jat) → Db be the associated sheaf topos. Any functor φ : C → D induces a geometric morphism C →b Db and, by pulling-back along j, a geometric morphism q : F → Sh(D, Jat). We give a sufficient condition on φ for q to satisfy the Nullstellensatz and Sufficient Cohesion in the sense of Axiomatic Cohesion. This is motivated by the examples where Dop is a category of finite field extensions. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34354 Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-149 1245-530X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34354 |
identifier_str_mv |
Menni, Matías; Sufficient cohesion over atomic toposes; Dunod; Cahiers de Topologie Et Geometrie Differentielle Categoriques; LV; Fascicule 2; 4-2014; 113-149 1245-530X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ehres.pagesperso-orange.fr/Cahiers/CTGDC%2055%202014/CahiersTopGDC%2055-2.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Dunod |
publisher.none.fl_str_mv |
Dunod |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269190013059072 |
score |
13.13397 |