The Calderón Projector for an elliptic operator in divergence form
- Autores
- Sanmartino, Marcela
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
elliptic boundary value problems
layer potentials
Lipschitz coefficients
C1
Lipschitz domains - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140059
Ver los metadatos del registro completo
id |
SEDICI_1f6b7c742c73f76830386542034792f5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140059 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The Calderón Projector for an elliptic operator in divergence formSanmartino, MarcelaCiencias ExactasFísicaelliptic boundary value problemslayer potentialsLipschitz coefficientsC1Lipschitz domainsThe Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.Facultad de Ciencias Exactas2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf615-631http://sedici.unlp.edu.ar/handle/10915/140059enginfo:eu-repo/semantics/altIdentifier/issn/1069-5869info:eu-repo/semantics/altIdentifier/issn/1531-5851info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02513079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:06Zoai:sedici.unlp.edu.ar:10915/140059Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:07.188SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The Calderón Projector for an elliptic operator in divergence form |
title |
The Calderón Projector for an elliptic operator in divergence form |
spellingShingle |
The Calderón Projector for an elliptic operator in divergence form Sanmartino, Marcela Ciencias Exactas Física elliptic boundary value problems layer potentials Lipschitz coefficients C1 Lipschitz domains |
title_short |
The Calderón Projector for an elliptic operator in divergence form |
title_full |
The Calderón Projector for an elliptic operator in divergence form |
title_fullStr |
The Calderón Projector for an elliptic operator in divergence form |
title_full_unstemmed |
The Calderón Projector for an elliptic operator in divergence form |
title_sort |
The Calderón Projector for an elliptic operator in divergence form |
dc.creator.none.fl_str_mv |
Sanmartino, Marcela |
author |
Sanmartino, Marcela |
author_facet |
Sanmartino, Marcela |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física elliptic boundary value problems layer potentials Lipschitz coefficients C1 Lipschitz domains |
topic |
Ciencias Exactas Física elliptic boundary value problems layer potentials Lipschitz coefficients C1 Lipschitz domains |
dc.description.none.fl_txt_mv |
The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains. Facultad de Ciencias Exactas |
description |
The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140059 |
url |
http://sedici.unlp.edu.ar/handle/10915/140059 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1069-5869 info:eu-repo/semantics/altIdentifier/issn/1531-5851 info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02513079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 615-631 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616200422686720 |
score |
13.069144 |