The Calderón Projector for an elliptic operator in divergence form

Autores
Sanmartino, Marcela
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
elliptic boundary value problems
layer potentials
Lipschitz coefficients
C1
Lipschitz domains
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140059

id SEDICI_1f6b7c742c73f76830386542034792f5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140059
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Calderón Projector for an elliptic operator in divergence formSanmartino, MarcelaCiencias ExactasFísicaelliptic boundary value problemslayer potentialsLipschitz coefficientsC1Lipschitz domainsThe Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.Facultad de Ciencias Exactas2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf615-631http://sedici.unlp.edu.ar/handle/10915/140059enginfo:eu-repo/semantics/altIdentifier/issn/1069-5869info:eu-repo/semantics/altIdentifier/issn/1531-5851info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02513079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:06Zoai:sedici.unlp.edu.ar:10915/140059Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:07.188SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Calderón Projector for an elliptic operator in divergence form
title The Calderón Projector for an elliptic operator in divergence form
spellingShingle The Calderón Projector for an elliptic operator in divergence form
Sanmartino, Marcela
Ciencias Exactas
Física
elliptic boundary value problems
layer potentials
Lipschitz coefficients
C1
Lipschitz domains
title_short The Calderón Projector for an elliptic operator in divergence form
title_full The Calderón Projector for an elliptic operator in divergence form
title_fullStr The Calderón Projector for an elliptic operator in divergence form
title_full_unstemmed The Calderón Projector for an elliptic operator in divergence form
title_sort The Calderón Projector for an elliptic operator in divergence form
dc.creator.none.fl_str_mv Sanmartino, Marcela
author Sanmartino, Marcela
author_facet Sanmartino, Marcela
author_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
elliptic boundary value problems
layer potentials
Lipschitz coefficients
C1
Lipschitz domains
topic Ciencias Exactas
Física
elliptic boundary value problems
layer potentials
Lipschitz coefficients
C1
Lipschitz domains
dc.description.none.fl_txt_mv The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.
Facultad de Ciencias Exactas
description The Calderon Projector, is one of the most important tools in the study of boundary value problems for elliptic operators. Its construction is well known for elliptic operators with C∞ coefficients on C∞ domains and even for the Laplacian operator on C1 domains. The aim of this article is to extend the results for the Laplacian case to elliptic operators in divergence form with Lipschitz coefficients on C1 domains.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140059
url http://sedici.unlp.edu.ar/handle/10915/140059
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1069-5869
info:eu-repo/semantics/altIdentifier/issn/1531-5851
info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02513079
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
615-631
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616200422686720
score 13.069144