Cavity type problems ruled by infinity Laplacian operator

Autores
Ricarte, G. C.; Da Silva, Joao Vitor; Teymurazyan, R.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a singularly perturbed problem related to infinity Laplacian operator with prescribed boundary values in a region. We prove that solutions are locally (uniformly) Lipschitz continuous, they grow as a linear function, are strongly non-degenerate and have porous level surfaces. Moreover, for some restricted cases we show the finiteness of the (n−1)-dimensional Hausdorff measure of level sets. The analysis of the asymptotic limits is carried out as well.
Fil: Ricarte, G. C.. Universidade Estadual do Ceará; Brasil
Fil: Da Silva, Joao Vitor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Teymurazyan, R.. Universidad de Coimbra; Portugal
Materia
Hausdorff Measure
Infinity Laplacian
Lipschitz Regularity
Singularly Perturbed Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60022

id CONICETDig_4c347953bad1e84c0af677db24c6cc63
oai_identifier_str oai:ri.conicet.gov.ar:11336/60022
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cavity type problems ruled by infinity Laplacian operatorRicarte, G. C.Da Silva, Joao VitorTeymurazyan, R.Hausdorff MeasureInfinity LaplacianLipschitz RegularitySingularly Perturbed Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study a singularly perturbed problem related to infinity Laplacian operator with prescribed boundary values in a region. We prove that solutions are locally (uniformly) Lipschitz continuous, they grow as a linear function, are strongly non-degenerate and have porous level surfaces. Moreover, for some restricted cases we show the finiteness of the (n−1)-dimensional Hausdorff measure of level sets. The analysis of the asymptotic limits is carried out as well.Fil: Ricarte, G. C.. Universidade Estadual do Ceará; BrasilFil: Da Silva, Joao Vitor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Teymurazyan, R.. Universidad de Coimbra; PortugalAcademic Press Inc Elsevier Science2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60022Ricarte, G. C.; Da Silva, Joao Vitor; Teymurazyan, R.; Cavity type problems ruled by infinity Laplacian operator; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 262; 3; 2-2017; 2135-21570022-0396CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022039616303783info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2016.10.044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:51:18Zoai:ri.conicet.gov.ar:11336/60022instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:51:18.651CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cavity type problems ruled by infinity Laplacian operator
title Cavity type problems ruled by infinity Laplacian operator
spellingShingle Cavity type problems ruled by infinity Laplacian operator
Ricarte, G. C.
Hausdorff Measure
Infinity Laplacian
Lipschitz Regularity
Singularly Perturbed Problems
title_short Cavity type problems ruled by infinity Laplacian operator
title_full Cavity type problems ruled by infinity Laplacian operator
title_fullStr Cavity type problems ruled by infinity Laplacian operator
title_full_unstemmed Cavity type problems ruled by infinity Laplacian operator
title_sort Cavity type problems ruled by infinity Laplacian operator
dc.creator.none.fl_str_mv Ricarte, G. C.
Da Silva, Joao Vitor
Teymurazyan, R.
author Ricarte, G. C.
author_facet Ricarte, G. C.
Da Silva, Joao Vitor
Teymurazyan, R.
author_role author
author2 Da Silva, Joao Vitor
Teymurazyan, R.
author2_role author
author
dc.subject.none.fl_str_mv Hausdorff Measure
Infinity Laplacian
Lipschitz Regularity
Singularly Perturbed Problems
topic Hausdorff Measure
Infinity Laplacian
Lipschitz Regularity
Singularly Perturbed Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a singularly perturbed problem related to infinity Laplacian operator with prescribed boundary values in a region. We prove that solutions are locally (uniformly) Lipschitz continuous, they grow as a linear function, are strongly non-degenerate and have porous level surfaces. Moreover, for some restricted cases we show the finiteness of the (n−1)-dimensional Hausdorff measure of level sets. The analysis of the asymptotic limits is carried out as well.
Fil: Ricarte, G. C.. Universidade Estadual do Ceará; Brasil
Fil: Da Silva, Joao Vitor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Teymurazyan, R.. Universidad de Coimbra; Portugal
description We study a singularly perturbed problem related to infinity Laplacian operator with prescribed boundary values in a region. We prove that solutions are locally (uniformly) Lipschitz continuous, they grow as a linear function, are strongly non-degenerate and have porous level surfaces. Moreover, for some restricted cases we show the finiteness of the (n−1)-dimensional Hausdorff measure of level sets. The analysis of the asymptotic limits is carried out as well.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60022
Ricarte, G. C.; Da Silva, Joao Vitor; Teymurazyan, R.; Cavity type problems ruled by infinity Laplacian operator; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 262; 3; 2-2017; 2135-2157
0022-0396
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60022
identifier_str_mv Ricarte, G. C.; Da Silva, Joao Vitor; Teymurazyan, R.; Cavity type problems ruled by infinity Laplacian operator; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 262; 3; 2-2017; 2135-2157
0022-0396
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022039616303783
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2016.10.044
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606134385016832
score 13.000565