A local symmetry result for linear elliptic problems with solutions changing sign

Autores
Canuto, B.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564
Materia
Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_02941449_v28_n4_p551_Canuto

id BDUBAFCEN_f73d37a4dfd035ad7759640f1565b422
oai_identifier_str paperaa:paper_02941449_v28_n4_p551_Canuto
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A local symmetry result for linear elliptic problems with solutions changing signCanuto, B.Elliptic problemFollowing problemLipschitz domainLocal symmetryUnit ballWe prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_CanutoAnna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:51Zpaperaa:paper_02941449_v28_n4_p551_CanutoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.177Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A local symmetry result for linear elliptic problems with solutions changing sign
title A local symmetry result for linear elliptic problems with solutions changing sign
spellingShingle A local symmetry result for linear elliptic problems with solutions changing sign
Canuto, B.
Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
title_short A local symmetry result for linear elliptic problems with solutions changing sign
title_full A local symmetry result for linear elliptic problems with solutions changing sign
title_fullStr A local symmetry result for linear elliptic problems with solutions changing sign
title_full_unstemmed A local symmetry result for linear elliptic problems with solutions changing sign
title_sort A local symmetry result for linear elliptic problems with solutions changing sign
dc.creator.none.fl_str_mv Canuto, B.
author Canuto, B.
author_facet Canuto, B.
author_role author
dc.subject.none.fl_str_mv Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
topic Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball
dc.description.none.fl_txt_mv We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
url http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618733706805248
score 13.070432