A local symmetry result for linear elliptic problems with solutions changing sign
- Autores
- Canuto, B.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564
- Materia
-
Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_02941449_v28_n4_p551_Canuto
Ver los metadatos del registro completo
| id |
BDUBAFCEN_f73d37a4dfd035ad7759640f1565b422 |
|---|---|
| oai_identifier_str |
paperaa:paper_02941449_v28_n4_p551_Canuto |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
A local symmetry result for linear elliptic problems with solutions changing signCanuto, B.Elliptic problemFollowing problemLipschitz domainLocal symmetryUnit ballWe prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_CanutoAnna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-30T11:20:55Zpaperaa:paper_02941449_v28_n4_p551_CanutoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-30 11:20:56.9Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
A local symmetry result for linear elliptic problems with solutions changing sign |
| title |
A local symmetry result for linear elliptic problems with solutions changing sign |
| spellingShingle |
A local symmetry result for linear elliptic problems with solutions changing sign Canuto, B. Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
| title_short |
A local symmetry result for linear elliptic problems with solutions changing sign |
| title_full |
A local symmetry result for linear elliptic problems with solutions changing sign |
| title_fullStr |
A local symmetry result for linear elliptic problems with solutions changing sign |
| title_full_unstemmed |
A local symmetry result for linear elliptic problems with solutions changing sign |
| title_sort |
A local symmetry result for linear elliptic problems with solutions changing sign |
| dc.creator.none.fl_str_mv |
Canuto, B. |
| author |
Canuto, B. |
| author_facet |
Canuto, B. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
| topic |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
| dc.description.none.fl_txt_mv |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
| url |
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1847418758294929408 |
| score |
13.10058 |