A local symmetry result for linear elliptic problems with solutions changing sign
- Autores
- Canuto, B.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.
Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564
- Materia
-
Elliptic problem
Following problem
Lipschitz domain
Local symmetry
Unit ball - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_02941449_v28_n4_p551_Canuto
Ver los metadatos del registro completo
id |
BDUBAFCEN_f73d37a4dfd035ad7759640f1565b422 |
---|---|
oai_identifier_str |
paperaa:paper_02941449_v28_n4_p551_Canuto |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A local symmetry result for linear elliptic problems with solutions changing signCanuto, B.Elliptic problemFollowing problemLipschitz domainLocal symmetryUnit ballWe prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS.Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_CanutoAnna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:51Zpaperaa:paper_02941449_v28_n4_p551_CanutoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:53.177Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A local symmetry result for linear elliptic problems with solutions changing sign |
title |
A local symmetry result for linear elliptic problems with solutions changing sign |
spellingShingle |
A local symmetry result for linear elliptic problems with solutions changing sign Canuto, B. Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
title_short |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_fullStr |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_full_unstemmed |
A local symmetry result for linear elliptic problems with solutions changing sign |
title_sort |
A local symmetry result for linear elliptic problems with solutions changing sign |
dc.creator.none.fl_str_mv |
Canuto, B. |
author |
Canuto, B. |
author_facet |
Canuto, B. |
author_role |
author |
dc.subject.none.fl_str_mv |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
topic |
Elliptic problem Following problem Lipschitz domain Local symmetry Unit ball |
dc.description.none.fl_txt_mv |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. Fil:Canuto, B. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We prove that the only domain Ω such that there exists a solution to the following problem Δu+ω2u=-1 in Ω, u=0 on δΩ, and 1|δΩ|∫δΩδ nu=c, for a given constant c, is the unit ball B1, if we assume that Ω lies in an appropriate class of Lipschitz domains. © 2011 Elsevier Masson SAS. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
url |
http://hdl.handle.net/20.500.12110/paper_02941449_v28_n4_p551_Canuto |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Anna Inst Henri Poincare Annal Anal Non Lineaire 2011;28(4):551-564 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618733706805248 |
score |
13.070432 |