Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
- Autores
- Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina
Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
BMO
FRACTIONAL INTEGRAL
LIPSCHITZ
SCHRÖDINGER
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/144319
Ver los metadatos del registro completo
id |
CONICETDig_856c06e952e23337cd547bfc05fe931e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/144319 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operatorCrescimbeni, Raquel LilianaHartzstein, Silvia InésSalinas, Oscar MarioBMOFRACTIONAL INTEGRALLIPSCHITZSCHRÖDINGERWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; ArgentinaFil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElement2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144319Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-12591331-43431848-9966CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7153/mia-2020-23-94info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/23-94/Two-weighted-inequalities-for-the-fractional-integral-associated-to-the-Schrodinger-operatorinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:03Zoai:ri.conicet.gov.ar:11336/144319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:03.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
title |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
spellingShingle |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator Crescimbeni, Raquel Liliana BMO FRACTIONAL INTEGRAL LIPSCHITZ SCHRÖDINGER WEIGHTS |
title_short |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
title_full |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
title_fullStr |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
title_full_unstemmed |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
title_sort |
Two-weighted inequalities for the fractional integral associated to the Schrödinger operator |
dc.creator.none.fl_str_mv |
Crescimbeni, Raquel Liliana Hartzstein, Silvia Inés Salinas, Oscar Mario |
author |
Crescimbeni, Raquel Liliana |
author_facet |
Crescimbeni, Raquel Liliana Hartzstein, Silvia Inés Salinas, Oscar Mario |
author_role |
author |
author2 |
Hartzstein, Silvia Inés Salinas, Oscar Mario |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BMO FRACTIONAL INTEGRAL LIPSCHITZ SCHRÖDINGER WEIGHTS |
topic |
BMO FRACTIONAL INTEGRAL LIPSCHITZ SCHRÖDINGER WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ. Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/144319 Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-1259 1331-4343 1848-9966 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/144319 |
identifier_str_mv |
Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-1259 1331-4343 1848-9966 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-2020-23-94 info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/23-94/Two-weighted-inequalities-for-the-fractional-integral-associated-to-the-Schrodinger-operator |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Element |
publisher.none.fl_str_mv |
Element |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980988512108544 |
score |
13.004268 |