Two-weighted inequalities for the fractional integral associated to the Schrödinger operator

Autores
Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina
Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
BMO
FRACTIONAL INTEGRAL
LIPSCHITZ
SCHRÖDINGER
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/144319

id CONICETDig_856c06e952e23337cd547bfc05fe931e
oai_identifier_str oai:ri.conicet.gov.ar:11336/144319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two-weighted inequalities for the fractional integral associated to the Schrödinger operatorCrescimbeni, Raquel LilianaHartzstein, Silvia InésSalinas, Oscar MarioBMOFRACTIONAL INTEGRALLIPSCHITZSCHRÖDINGERWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; ArgentinaFil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElement2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144319Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-12591331-43431848-9966CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7153/mia-2020-23-94info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/23-94/Two-weighted-inequalities-for-the-fractional-integral-associated-to-the-Schrodinger-operatorinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:18:03Zoai:ri.conicet.gov.ar:11336/144319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:18:03.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
title Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
spellingShingle Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
Crescimbeni, Raquel Liliana
BMO
FRACTIONAL INTEGRAL
LIPSCHITZ
SCHRÖDINGER
WEIGHTS
title_short Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
title_full Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
title_fullStr Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
title_full_unstemmed Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
title_sort Two-weighted inequalities for the fractional integral associated to the Schrödinger operator
dc.creator.none.fl_str_mv Crescimbeni, Raquel Liliana
Hartzstein, Silvia Inés
Salinas, Oscar Mario
author Crescimbeni, Raquel Liliana
author_facet Crescimbeni, Raquel Liliana
Hartzstein, Silvia Inés
Salinas, Oscar Mario
author_role author
author2 Hartzstein, Silvia Inés
Salinas, Oscar Mario
author2_role author
author
dc.subject.none.fl_str_mv BMO
FRACTIONAL INTEGRAL
LIPSCHITZ
SCHRÖDINGER
WEIGHTS
topic BMO
FRACTIONAL INTEGRAL
LIPSCHITZ
SCHRÖDINGER
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina
Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this article we prove that the fractional integral operator associated to the Schrödinger second order differential operator L-α/2=(-Δ + V)-α/2maps with continuity weak Lebesgue space Lp,∞(v) into weighted Campanato-Hölder type spaces BMOβL(w), thus improving regularity under appropriate conditions on the pair of weights (v,w) and the parameters p, α and β. We also prove the continuous mapping from BMOβL(v) to BMOγL(w) for adequate pair of weights. Our results improve those known for the same weight in both sides of the inequality and they also enlarge the families of weights known for the classical fractional integral associated to the Laplacian operator L = -Δ.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/144319
Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-1259
1331-4343
1848-9966
CONICET Digital
CONICET
url http://hdl.handle.net/11336/144319
identifier_str_mv Crescimbeni, Raquel Liliana; Hartzstein, Silvia Inés; Salinas, Oscar Mario; Two-weighted inequalities for the fractional integral associated to the Schrödinger operator; Element; Mathematical Inequalities & Applications; 23; 4; 10-2020; 1227-1259
1331-4343
1848-9966
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-2020-23-94
info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/23-94/Two-weighted-inequalities-for-the-fractional-integral-associated-to-the-Schrodinger-operator
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Element
publisher.none.fl_str_mv Element
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980988512108544
score 13.004268