The Riesz potential as a multilinear operator into general BMOβ spaces
- Autores
- Aimar, Hugo Alejandro; Hartzstein, Silvia Inés; Iaffei, Bibiana Raquel; Viviani, Beatriz Eleonora
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given α > 0 and a space of homogeneous type X, n-normal, with n ℝ+, we consider an extension of the standard multilinear fractional integral on Lp1 × ... × Lpk for the range of 1/pi = 1/p1...+1/pk -α/n ≤ 0. We show that the target space is an adequate space BMOβ defined through mean oscillations. For general spaces of homogeneous type this is a Banach space of classes of functions modulii constants and the range of β is [0, 1). However, if X = ℝn (n ∈ N), we can extend the result to β > 0 taking in account that BMOβ is a space of classes modulii polynomials of order lower than or equal to [β]. Bibliography: 15 titles.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina
Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Riesz Potentials
Multilinear Operators
Lipschitz Integral Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84086
Ver los metadatos del registro completo
| id |
CONICETDig_9d2108da466a65bdfb56c12b63faea02 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84086 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The Riesz potential as a multilinear operator into general BMOβ spacesAimar, Hugo AlejandroHartzstein, Silvia InésIaffei, Bibiana RaquelViviani, Beatriz EleonoraRiesz PotentialsMultilinear OperatorsLipschitz Integral Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given α > 0 and a space of homogeneous type X, n-normal, with n ℝ+, we consider an extension of the standard multilinear fractional integral on Lp1 × ... × Lpk for the range of 1/pi = 1/p1...+1/pk -α/n ≤ 0. We show that the target space is an adequate space BMOβ defined through mean oscillations. For general spaces of homogeneous type this is a Banach space of classes of functions modulii constants and the range of β is [0, 1). However, if X = ℝn (n ∈ N), we can extend the result to β > 0 taking in account that BMOβ is a space of classes modulii polynomials of order lower than or equal to [β]. Bibliography: 15 titles.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; ArgentinaFil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaSpringer Science2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84086Aimar, Hugo Alejandro; Hartzstein, Silvia Inés; Iaffei, Bibiana Raquel; Viviani, Beatriz Eleonora; The Riesz potential as a multilinear operator into general BMOβ spaces; Springer Science; Journal Of Mathematical Sciences; 173; 6; 3-2011; 643-6551072-3374CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.springerlink.com/content/yp6636458k02121v/info:eu-repo/semantics/altIdentifier/doi/10.1007/s10958-011-0264-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:38:49Zoai:ri.conicet.gov.ar:11336/84086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:38:49.516CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| title |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| spellingShingle |
The Riesz potential as a multilinear operator into general BMOβ spaces Aimar, Hugo Alejandro Riesz Potentials Multilinear Operators Lipschitz Integral Spaces |
| title_short |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| title_full |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| title_fullStr |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| title_full_unstemmed |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| title_sort |
The Riesz potential as a multilinear operator into general BMOβ spaces |
| dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Hartzstein, Silvia Inés Iaffei, Bibiana Raquel Viviani, Beatriz Eleonora |
| author |
Aimar, Hugo Alejandro |
| author_facet |
Aimar, Hugo Alejandro Hartzstein, Silvia Inés Iaffei, Bibiana Raquel Viviani, Beatriz Eleonora |
| author_role |
author |
| author2 |
Hartzstein, Silvia Inés Iaffei, Bibiana Raquel Viviani, Beatriz Eleonora |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Riesz Potentials Multilinear Operators Lipschitz Integral Spaces |
| topic |
Riesz Potentials Multilinear Operators Lipschitz Integral Spaces |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given α > 0 and a space of homogeneous type X, n-normal, with n ℝ+, we consider an extension of the standard multilinear fractional integral on Lp1 × ... × Lpk for the range of 1/pi = 1/p1...+1/pk -α/n ≤ 0. We show that the target space is an adequate space BMOβ defined through mean oscillations. For general spaces of homogeneous type this is a Banach space of classes of functions modulii constants and the range of β is [0, 1). However, if X = ℝn (n ∈ N), we can extend the result to β > 0 taking in account that BMOβ is a space of classes modulii polynomials of order lower than or equal to [β]. Bibliography: 15 titles. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Hartzstein, Silvia Inés. Universidad Nacional del Litoral; Argentina Fil: Iaffei, Bibiana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
| description |
Given α > 0 and a space of homogeneous type X, n-normal, with n ℝ+, we consider an extension of the standard multilinear fractional integral on Lp1 × ... × Lpk for the range of 1/pi = 1/p1...+1/pk -α/n ≤ 0. We show that the target space is an adequate space BMOβ defined through mean oscillations. For general spaces of homogeneous type this is a Banach space of classes of functions modulii constants and the range of β is [0, 1). However, if X = ℝn (n ∈ N), we can extend the result to β > 0 taking in account that BMOβ is a space of classes modulii polynomials of order lower than or equal to [β]. Bibliography: 15 titles. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84086 Aimar, Hugo Alejandro; Hartzstein, Silvia Inés; Iaffei, Bibiana Raquel; Viviani, Beatriz Eleonora; The Riesz potential as a multilinear operator into general BMOβ spaces; Springer Science; Journal Of Mathematical Sciences; 173; 6; 3-2011; 643-655 1072-3374 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/84086 |
| identifier_str_mv |
Aimar, Hugo Alejandro; Hartzstein, Silvia Inés; Iaffei, Bibiana Raquel; Viviani, Beatriz Eleonora; The Riesz potential as a multilinear operator into general BMOβ spaces; Springer Science; Journal Of Mathematical Sciences; 173; 6; 3-2011; 643-655 1072-3374 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.springerlink.com/content/yp6636458k02121v/ info:eu-repo/semantics/altIdentifier/doi/10.1007/s10958-011-0264-3 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Science |
| publisher.none.fl_str_mv |
Springer Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978082677293056 |
| score |
13.084122 |