Clique-critical graphs: Maximum size and recognition

Autores
Alcón, Liliana Graciela
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The clique graph of G, K (G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K-1 (G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Clique graphs
Clique-critical graphs
NP-complete problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83201

id SEDICI_04989a097b139068bafee34558000cd8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83201
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clique-critical graphs: Maximum size and recognitionAlcón, Liliana GracielaCiencias ExactasClique graphsClique-critical graphsNP-complete problemsThe clique graph of G, K (G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K<SUB>-1</SUB> (G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.Facultad de Ciencias Exactas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1799-1802http://sedici.unlp.edu.ar/handle/10915/83201enginfo:eu-repo/semantics/altIdentifier/issn/0166-218Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2006.03.024info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:01Zoai:sedici.unlp.edu.ar:10915/83201Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:01.874SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clique-critical graphs: Maximum size and recognition
title Clique-critical graphs: Maximum size and recognition
spellingShingle Clique-critical graphs: Maximum size and recognition
Alcón, Liliana Graciela
Ciencias Exactas
Clique graphs
Clique-critical graphs
NP-complete problems
title_short Clique-critical graphs: Maximum size and recognition
title_full Clique-critical graphs: Maximum size and recognition
title_fullStr Clique-critical graphs: Maximum size and recognition
title_full_unstemmed Clique-critical graphs: Maximum size and recognition
title_sort Clique-critical graphs: Maximum size and recognition
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
author_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Clique graphs
Clique-critical graphs
NP-complete problems
topic Ciencias Exactas
Clique graphs
Clique-critical graphs
NP-complete problems
dc.description.none.fl_txt_mv The clique graph of G, K (G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K<SUB>-1</SUB> (G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.
Facultad de Ciencias Exactas
description The clique graph of G, K (G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K<SUB>-1</SUB> (G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83201
url http://sedici.unlp.edu.ar/handle/10915/83201
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0166-218X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2006.03.024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1799-1802
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260354012282880
score 13.13397