On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
- Autores
- Alcón, Liliana Graciela; Faria, L.; Figueiredo, C. M. H. de; Gutiérrez, Marisa
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.
Facultad de Ciencias Exactas - Materia
-
Matemática
Approximation algorithms
Clique graphs
Clique-Helly graphs
Hereditary clique-Helly graphs
Max SNP-hard
NP-complete
Clique graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82445
Ver los metadatos del registro completo
id |
SEDICI_f562581381a83048abda99e37e937707 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82445 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphsAlcón, Liliana GracielaFaria, L.Figueiredo, C. M. H. deGutiérrez, MarisaMatemáticaApproximation algorithmsClique graphsClique-Helly graphsHereditary clique-Helly graphsMax SNP-hardNP-completeClique graphsClique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1279-1285http://sedici.unlp.edu.ar/handle/10915/82445enginfo:eu-repo/semantics/altIdentifier/issn/0166-218Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:46Zoai:sedici.unlp.edu.ar:10915/82445Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:47.186SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
title |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
spellingShingle |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs Alcón, Liliana Graciela Matemática Approximation algorithms Clique graphs Clique-Helly graphs Hereditary clique-Helly graphs Max SNP-hard NP-complete Clique graphs |
title_short |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
title_full |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
title_fullStr |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
title_full_unstemmed |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
title_sort |
On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Faria, L. Figueiredo, C. M. H. de Gutiérrez, Marisa |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Faria, L. Figueiredo, C. M. H. de Gutiérrez, Marisa |
author_role |
author |
author2 |
Faria, L. Figueiredo, C. M. H. de Gutiérrez, Marisa |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Matemática Approximation algorithms Clique graphs Clique-Helly graphs Hereditary clique-Helly graphs Max SNP-hard NP-complete Clique graphs |
topic |
Matemática Approximation algorithms Clique graphs Clique-Helly graphs Hereditary clique-Helly graphs Max SNP-hard NP-complete Clique graphs |
dc.description.none.fl_txt_mv |
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph. Facultad de Ciencias Exactas |
description |
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82445 |
url |
http://sedici.unlp.edu.ar/handle/10915/82445 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0166-218X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1279-1285 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260350951489536 |
score |
13.13397 |