On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

Autores
Alcón, Liliana Graciela; Faria, L.; Figueiredo, C. M. H. de; Gutiérrez, Marisa
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.
Facultad de Ciencias Exactas
Materia
Matemática
Approximation algorithms
Clique graphs
Clique-Helly graphs
Hereditary clique-Helly graphs
Max SNP-hard
NP-complete
Clique graphs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82445

id SEDICI_f562581381a83048abda99e37e937707
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82445
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphsAlcón, Liliana GracielaFaria, L.Figueiredo, C. M. H. deGutiérrez, MarisaMatemáticaApproximation algorithmsClique graphsClique-Helly graphsHereditary clique-Helly graphsMax SNP-hardNP-completeClique graphsClique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exactas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1279-1285http://sedici.unlp.edu.ar/handle/10915/82445enginfo:eu-repo/semantics/altIdentifier/issn/0166-218Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:46Zoai:sedici.unlp.edu.ar:10915/82445Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:47.186SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
title On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
spellingShingle On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
Alcón, Liliana Graciela
Matemática
Approximation algorithms
Clique graphs
Clique-Helly graphs
Hereditary clique-Helly graphs
Max SNP-hard
NP-complete
Clique graphs
title_short On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
title_full On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
title_fullStr On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
title_full_unstemmed On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
title_sort On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
Faria, L.
Figueiredo, C. M. H. de
Gutiérrez, Marisa
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
Faria, L.
Figueiredo, C. M. H. de
Gutiérrez, Marisa
author_role author
author2 Faria, L.
Figueiredo, C. M. H. de
Gutiérrez, Marisa
author2_role author
author
author
dc.subject.none.fl_str_mv Matemática
Approximation algorithms
Clique graphs
Clique-Helly graphs
Hereditary clique-Helly graphs
Max SNP-hard
NP-complete
Clique graphs
topic Matemática
Approximation algorithms
Clique graphs
Clique-Helly graphs
Hereditary clique-Helly graphs
Max SNP-hard
NP-complete
Clique graphs
dc.description.none.fl_txt_mv Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.
Facultad de Ciencias Exactas
description Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82445
url http://sedici.unlp.edu.ar/handle/10915/82445
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0166-218X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2009.01.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1279-1285
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260350951489536
score 13.13397