The complexity of clique graph recognition

Autores
Alcón, Liliana Graciela; Faria, Luerbio; Figueiredo, Celina M. H. de; Gutiérrez, Marisa
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.
Facultad de Ciencias Exactas
Materia
Matemática
Clique graphs
Helly property
Intersection graphs
NP-complete problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82662

id SEDICI_10dfe95056e393557aaf1d7f4ca03bf4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82662
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The complexity of clique graph recognitionAlcón, Liliana GracielaFaria, LuerbioFigueiredo, Celina M. H. deGutiérrez, MarisaMatemáticaClique graphsHelly propertyIntersection graphsNP-complete problemsA complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exactas2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2072-2083http://sedici.unlp.edu.ar/handle/10915/82662enginfo:eu-repo/semantics/altIdentifier/issn/0304-3975info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2009.01.018info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:51Zoai:sedici.unlp.edu.ar:10915/82662Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:52.013SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The complexity of clique graph recognition
title The complexity of clique graph recognition
spellingShingle The complexity of clique graph recognition
Alcón, Liliana Graciela
Matemática
Clique graphs
Helly property
Intersection graphs
NP-complete problems
title_short The complexity of clique graph recognition
title_full The complexity of clique graph recognition
title_fullStr The complexity of clique graph recognition
title_full_unstemmed The complexity of clique graph recognition
title_sort The complexity of clique graph recognition
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
Faria, Luerbio
Figueiredo, Celina M. H. de
Gutiérrez, Marisa
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
Faria, Luerbio
Figueiredo, Celina M. H. de
Gutiérrez, Marisa
author_role author
author2 Faria, Luerbio
Figueiredo, Celina M. H. de
Gutiérrez, Marisa
author2_role author
author
author
dc.subject.none.fl_str_mv Matemática
Clique graphs
Helly property
Intersection graphs
NP-complete problems
topic Matemática
Clique graphs
Helly property
Intersection graphs
NP-complete problems
dc.description.none.fl_txt_mv A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.
Facultad de Ciencias Exactas
description A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82662
url http://sedici.unlp.edu.ar/handle/10915/82662
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0304-3975
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2009.01.018
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2072-2083
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260351868993536
score 13.13397