Split Clique Graph complexity

Autores
Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; Brasil
Fil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CLIQUE GRAPHS
HELLY PROPERTY
NP-COMPLETE
SPLIT GRAPHS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/95177

id CONICETDig_04a5b4213f4aa42497e26fb4a8913450
oai_identifier_str oai:ri.conicet.gov.ar:11336/95177
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Split Clique Graph complexityAlcón, Liliana GracielaFaria, LuerbioDe Figueiredo, Celina M.H.Gutierrez, MarisaCLIQUE GRAPHSHELLY PROPERTYNP-COMPLETESPLIT GRAPHShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; BrasilFil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; BrasilFil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95177Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-420304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397513005367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2013.07.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:01Zoai:ri.conicet.gov.ar:11336/95177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:02.165CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Split Clique Graph complexity
title Split Clique Graph complexity
spellingShingle Split Clique Graph complexity
Alcón, Liliana Graciela
CLIQUE GRAPHS
HELLY PROPERTY
NP-COMPLETE
SPLIT GRAPHS
title_short Split Clique Graph complexity
title_full Split Clique Graph complexity
title_fullStr Split Clique Graph complexity
title_full_unstemmed Split Clique Graph complexity
title_sort Split Clique Graph complexity
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
Faria, Luerbio
De Figueiredo, Celina M.H.
Gutierrez, Marisa
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
Faria, Luerbio
De Figueiredo, Celina M.H.
Gutierrez, Marisa
author_role author
author2 Faria, Luerbio
De Figueiredo, Celina M.H.
Gutierrez, Marisa
author2_role author
author
author
dc.subject.none.fl_str_mv CLIQUE GRAPHS
HELLY PROPERTY
NP-COMPLETE
SPLIT GRAPHS
topic CLIQUE GRAPHS
HELLY PROPERTY
NP-COMPLETE
SPLIT GRAPHS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; Brasil
Fil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/95177
Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-42
0304-3975
CONICET Digital
CONICET
url http://hdl.handle.net/11336/95177
identifier_str_mv Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-42
0304-3975
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397513005367
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2013.07.020
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269887681003520
score 13.13397