Split Clique Graph complexity
- Autores
- Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.
Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; Brasil
Fil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; Brasil
Fil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CLIQUE GRAPHS
HELLY PROPERTY
NP-COMPLETE
SPLIT GRAPHS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95177
Ver los metadatos del registro completo
id |
CONICETDig_04a5b4213f4aa42497e26fb4a8913450 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95177 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Split Clique Graph complexityAlcón, Liliana GracielaFaria, LuerbioDe Figueiredo, Celina M.H.Gutierrez, MarisaCLIQUE GRAPHSHELLY PROPERTYNP-COMPLETESPLIT GRAPHShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; BrasilFil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; BrasilFil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95177Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-420304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397513005367info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2013.07.020info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:01Zoai:ri.conicet.gov.ar:11336/95177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:02.165CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Split Clique Graph complexity |
title |
Split Clique Graph complexity |
spellingShingle |
Split Clique Graph complexity Alcón, Liliana Graciela CLIQUE GRAPHS HELLY PROPERTY NP-COMPLETE SPLIT GRAPHS |
title_short |
Split Clique Graph complexity |
title_full |
Split Clique Graph complexity |
title_fullStr |
Split Clique Graph complexity |
title_full_unstemmed |
Split Clique Graph complexity |
title_sort |
Split Clique Graph complexity |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Faria, Luerbio De Figueiredo, Celina M.H. Gutierrez, Marisa |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Faria, Luerbio De Figueiredo, Celina M.H. Gutierrez, Marisa |
author_role |
author |
author2 |
Faria, Luerbio De Figueiredo, Celina M.H. Gutierrez, Marisa |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CLIQUE GRAPHS HELLY PROPERTY NP-COMPLETE SPLIT GRAPHS |
topic |
CLIQUE GRAPHS HELLY PROPERTY NP-COMPLETE SPLIT GRAPHS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4. Fil: Alcón, Liliana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina Fil: Faria, Luerbio. Universidade do Estado de Rio do Janeiro; Brasil Fil: De Figueiredo, Celina M.H.. Universidade Federal do Rio de Janeiro; Brasil Fil: Gutierrez, Marisa. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95177 Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-42 0304-3975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95177 |
identifier_str_mv |
Alcón, Liliana Graciela; Faria, Luerbio; De Figueiredo, Celina M.H.; Gutierrez, Marisa; Split Clique Graph complexity; Elsevier Science; Theoretical Computer Science; 506; 9-2013; 29-42 0304-3975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397513005367 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2013.07.020 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269887681003520 |
score |
13.13397 |