Two infinite families of critical clique-Helly graphs
- Autores
- Alcón, Liliana Graciela; Pizaña, Miguel A.; Ravenna, Gabriela Susana
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture.
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Helly property
Clique-Helly graphs
Clique graphs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124932
Ver los metadatos del registro completo
id |
SEDICI_3549570f541970379e3d9cdac1e1a3c6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124932 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Two infinite families of critical clique-Helly graphsAlcón, Liliana GracielaPizaña, Miguel A.Ravenna, Gabriela SusanaCiencias ExactasFísicaHelly propertyClique-Helly graphsClique graphsA graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture.Instituto de Física La Plata2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2-5http://sedici.unlp.edu.ar/handle/10915/124932enginfo:eu-repo/semantics/altIdentifier/issn/0166-218xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2019.06.025info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:01:58Zoai:sedici.unlp.edu.ar:10915/124932Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:01:58.915SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Two infinite families of critical clique-Helly graphs |
title |
Two infinite families of critical clique-Helly graphs |
spellingShingle |
Two infinite families of critical clique-Helly graphs Alcón, Liliana Graciela Ciencias Exactas Física Helly property Clique-Helly graphs Clique graphs |
title_short |
Two infinite families of critical clique-Helly graphs |
title_full |
Two infinite families of critical clique-Helly graphs |
title_fullStr |
Two infinite families of critical clique-Helly graphs |
title_full_unstemmed |
Two infinite families of critical clique-Helly graphs |
title_sort |
Two infinite families of critical clique-Helly graphs |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Pizaña, Miguel A. Ravenna, Gabriela Susana |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Pizaña, Miguel A. Ravenna, Gabriela Susana |
author_role |
author |
author2 |
Pizaña, Miguel A. Ravenna, Gabriela Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Helly property Clique-Helly graphs Clique graphs |
topic |
Ciencias Exactas Física Helly property Clique-Helly graphs Clique graphs |
dc.description.none.fl_txt_mv |
A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture. Instituto de Física La Plata |
description |
A graph is clique–Helly if every family of pairwise intersecting (maximal) cliques has non-empty total intersection. Dourado, Protti and Szwarcfiter conjectured that every clique–Helly graph contains a vertex whose removal maintains it as a clique–Helly graph. We present here two infinite families of counterexamples to this conjecture. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124932 |
url |
http://sedici.unlp.edu.ar/handle/10915/124932 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0166-218x info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2019.06.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 2-5 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260517718065152 |
score |
13.13397 |