Geometry of the projective unitary group of a C*-algebra
- Autores
- Andruchow, Esteban
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let A be a C*-algebra with a faithful state ?. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C?-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ?-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C*-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ? 2), which metrizes the strong operator topology of P UA. - Fuente
- Revista de la Unión Matemática Argentina. Jun. 2017; 58(2): 319-329
https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol58 - Materia
-
C*-Algebra
Projective unitaries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1810
Ver los metadatos del registro completo
id |
RIUNGS_7ab950c2d6ea9dfeae2e893d270621eb |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1810 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Geometry of the projective unitary group of a C*-algebraAndruchow, EstebanC*-AlgebraProjective unitariesFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let A be a C*-algebra with a faithful state ?. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C?-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ?-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C*-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ? 2), which metrizes the strong operator topology of P UA.Unión Matemática Argentina2024-12-23T13:21:48Z2024-12-23T13:21:48Z2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E. (2017). Geometry of the projective unitary group of a C*-algebra. Revista de la Unión Matemática Argentina, 58(2), 319-329.0041-6932http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1810Revista de la Unión Matemática Argentina. Jun. 2017; 58(2): 319-329https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol58reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-04T11:42:59Zoai:repositorio.ungs.edu.ar:UNGS/1810instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-04 11:43:00.186Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Geometry of the projective unitary group of a C*-algebra |
title |
Geometry of the projective unitary group of a C*-algebra |
spellingShingle |
Geometry of the projective unitary group of a C*-algebra Andruchow, Esteban C*-Algebra Projective unitaries |
title_short |
Geometry of the projective unitary group of a C*-algebra |
title_full |
Geometry of the projective unitary group of a C*-algebra |
title_fullStr |
Geometry of the projective unitary group of a C*-algebra |
title_full_unstemmed |
Geometry of the projective unitary group of a C*-algebra |
title_sort |
Geometry of the projective unitary group of a C*-algebra |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
C*-Algebra Projective unitaries |
topic |
C*-Algebra Projective unitaries |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let A be a C*-algebra with a faithful state ?. It is proved thatthe projective unitary group P UA of A,P UA = UA/T.1,(UA denotes the unitary group of A) is a C?-submanifold of the Banach spaceBs(A) of bounded operators acting in A, which are symmetric for the ?-innerproduct, and are usually called symmetrizable linear operators in A.A quotient Finsler metric is introduced in P UA, following the theory ofhomogeneous spaces of the unitary group of a C*-algebra. Curves of minimallength with any given initial conditions are exhibited. Also it is proved that ifA is a von Neumann algebra (or more generally, an algebra where the unitarygroup is exponential) two elements in P UA can be joined by a minimal curve.In the case when A is a von Neumann algebra with a finite trace, theseminimality results hold for the quotient of the metric induced by the p-normof the trace (p ? 2), which metrizes the strong operator topology of P UA. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2024-12-23T13:21:48Z 2024-12-23T13:21:48Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E. (2017). Geometry of the projective unitary group of a C*-algebra. Revista de la Unión Matemática Argentina, 58(2), 319-329. 0041-6932 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1810 |
identifier_str_mv |
Andruchow, E. (2017). Geometry of the projective unitary group of a C*-algebra. Revista de la Unión Matemática Argentina, 58(2), 319-329. 0041-6932 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1810 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
Revista de la Unión Matemática Argentina. Jun. 2017; 58(2): 319-329 https://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol58 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1842346537706848256 |
score |
12.623145 |