Projective space of a C*-module
- Autores
- Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let X be a right Hilbert C^*-module over A. We study the geometry and the topology of the projective space P(X) of X, consisting of the orthocomplemented submodules of X which are generated by a single element. We also study the geometry of the p-sphere S_p(X) and the natural fibration S_p(X) →P(X), where S_p(X)={x ∈ X : ⟨ x,x ⟩=p}, for p∈ A a projection. The projective space and the p-sphere are shown to be homogeneous differentiable spaces of the unitary group of the algebra L_A(X)$ of adjointable operators of X. The homotopy theory of these spaces is examined.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
MODULO
PROJECTIVE
GEODESICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110303
Ver los metadatos del registro completo
id |
CONICETDig_37a9fb7c37afd4aee4ee1db3608e84cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110303 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Projective space of a C*-moduleAndruchow, EstebanCorach, GustavoStojanoff, DemetrioMODULOPROJECTIVEGEODESICShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let X be a right Hilbert C^*-module over A. We study the geometry and the topology of the projective space P(X) of X, consisting of the orthocomplemented submodules of X which are generated by a single element. We also study the geometry of the p-sphere S_p(X) and the natural fibration S_p(X) →P(X), where S_p(X)={x ∈ X : ⟨ x,x ⟩=p}, for p∈ A a projection. The projective space and the p-sphere are shown to be homogeneous differentiable spaces of the unitary group of the algebra L_A(X)$ of adjointable operators of X. The homotopy theory of these spaces is examined.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaWorld Scientific2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110303Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective space of a C*-module; World Scientific; Infinite Dimensional Analysis, Quantum Probability And Related Topics; 04; 03; 11-2011; 289-3070219-0257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219025701000516info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219025701000516info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:01Zoai:ri.conicet.gov.ar:11336/110303instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:01.897CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Projective space of a C*-module |
title |
Projective space of a C*-module |
spellingShingle |
Projective space of a C*-module Andruchow, Esteban MODULO PROJECTIVE GEODESICS |
title_short |
Projective space of a C*-module |
title_full |
Projective space of a C*-module |
title_fullStr |
Projective space of a C*-module |
title_full_unstemmed |
Projective space of a C*-module |
title_sort |
Projective space of a C*-module |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
author_role |
author |
author2 |
Corach, Gustavo Stojanoff, Demetrio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MODULO PROJECTIVE GEODESICS |
topic |
MODULO PROJECTIVE GEODESICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let X be a right Hilbert C^*-module over A. We study the geometry and the topology of the projective space P(X) of X, consisting of the orthocomplemented submodules of X which are generated by a single element. We also study the geometry of the p-sphere S_p(X) and the natural fibration S_p(X) →P(X), where S_p(X)={x ∈ X : ⟨ x,x ⟩=p}, for p∈ A a projection. The projective space and the p-sphere are shown to be homogeneous differentiable spaces of the unitary group of the algebra L_A(X)$ of adjointable operators of X. The homotopy theory of these spaces is examined. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Let X be a right Hilbert C^*-module over A. We study the geometry and the topology of the projective space P(X) of X, consisting of the orthocomplemented submodules of X which are generated by a single element. We also study the geometry of the p-sphere S_p(X) and the natural fibration S_p(X) →P(X), where S_p(X)={x ∈ X : ⟨ x,x ⟩=p}, for p∈ A a projection. The projective space and the p-sphere are shown to be homogeneous differentiable spaces of the unitary group of the algebra L_A(X)$ of adjointable operators of X. The homotopy theory of these spaces is examined. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110303 Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective space of a C*-module; World Scientific; Infinite Dimensional Analysis, Quantum Probability And Related Topics; 04; 03; 11-2011; 289-307 0219-0257 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110303 |
identifier_str_mv |
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Projective space of a C*-module; World Scientific; Infinite Dimensional Analysis, Quantum Probability And Related Topics; 04; 03; 11-2011; 289-307 0219-0257 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219025701000516 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219025701000516 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980807610728448 |
score |
13.004268 |