Projective geometry of the Poincaré disk of a C*-algebra
- Autores
- Andruchow, Esteban; Corach, Gustavo; Recht, Lázaro
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
We study the Poincar´e disk $d={aina: |a|<1}$ of a C$^*$-algebra $a$ from a projective point of view: $d$ is regarded as an open subset of the projective line $pa$, the space of complemented rank one submodules of $a^2$. We introduce the concept of cross ratio of four points in $pa$. Our main result establishes the relation between the exponential map $Exp_{z_0}(z_1)$ of $d$ ($z_0,z_1ind$) and the cross ratio of the four-tuple $$delta(-infty), delta(0)=z_0, delta(1)=z_1 , delta(+infty),$$ where $delta$ is the unique geodesic of $d$ joining $z_0$ and $z_1$ at times $t=0$ and $t=1$, respectively. Here $delta(-infty)=lim_{to-infty}delta(t)$ and $delta(+infty)=lim_{to+infty}delta(t)$, the limits are considered in the strong operator topology, and may take values in the universal algebra $a^{**}$. - Fuente
- Journal of Operator Theory. 2023; 89(1): 155-182
http://www.mathjournals.org/jot/2023-089-001/ - Materia
-
Projective line
Poincaré disk
C*-algebra - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio

- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1811
Ver los metadatos del registro completo
| id |
RIUNGS_da84a97573ae93a3782e70ab0607fee2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1811 |
| network_acronym_str |
RIUNGS |
| repository_id_str |
|
| network_name_str |
Repositorio Institucional UNGS |
| spelling |
Projective geometry of the Poincaré disk of a C*-algebraAndruchow, EstebanCorach, GustavoRecht, LázaroProjective linePoincaré diskC*-algebraFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.We study the Poincar´e disk $d={aina: |a|<1}$ of a C$^*$-algebra $a$ from a projective point of view: $d$ is regarded as an open subset of the projective line $pa$, the space of complemented rank one submodules of $a^2$. We introduce the concept of cross ratio of four points in $pa$. Our main result establishes the relation between the exponential map $Exp_{z_0}(z_1)$ of $d$ ($z_0,z_1ind$) and the cross ratio of the four-tuple $$delta(-infty), delta(0)=z_0, delta(1)=z_1 , delta(+infty),$$ where $delta$ is the unique geodesic of $d$ joining $z_0$ and $z_1$ at times $t=0$ and $t=1$, respectively. Here $delta(-infty)=lim_{to-infty}delta(t)$ and $delta(+infty)=lim_{to+infty}delta(t)$, the limits are considered in the strong operator topology, and may take values in the universal algebra $a^{**}$.Theta Foundation2024-12-23T13:21:48Z2024-12-23T13:21:48Z2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAndruchow, E., Corach, G. y Recht, L. (2023). Projective geometry of the Poincaré disk of a C*-algebra. Journal of Operator Theory, 89(1), 155-182.0379-4024http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1811Journal of Operator Theory. 2023; 89(1): 155-182http://www.mathjournals.org/jot/2023-089-001/reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.7900/jot.2021dec27.2356info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-30T12:34:43Zoai:repositorio.ungs.edu.ar:UNGS/1811instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-30 12:34:44.046Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
| dc.title.none.fl_str_mv |
Projective geometry of the Poincaré disk of a C*-algebra |
| title |
Projective geometry of the Poincaré disk of a C*-algebra |
| spellingShingle |
Projective geometry of the Poincaré disk of a C*-algebra Andruchow, Esteban Projective line Poincaré disk C*-algebra |
| title_short |
Projective geometry of the Poincaré disk of a C*-algebra |
| title_full |
Projective geometry of the Poincaré disk of a C*-algebra |
| title_fullStr |
Projective geometry of the Poincaré disk of a C*-algebra |
| title_full_unstemmed |
Projective geometry of the Poincaré disk of a C*-algebra |
| title_sort |
Projective geometry of the Poincaré disk of a C*-algebra |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Recht, Lázaro |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Corach, Gustavo Recht, Lázaro |
| author_role |
author |
| author2 |
Corach, Gustavo Recht, Lázaro |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Projective line Poincaré disk C*-algebra |
| topic |
Projective line Poincaré disk C*-algebra |
| dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Recht, Lázaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. We study the Poincar´e disk $d={aina: |a|<1}$ of a C$^*$-algebra $a$ from a projective point of view: $d$ is regarded as an open subset of the projective line $pa$, the space of complemented rank one submodules of $a^2$. We introduce the concept of cross ratio of four points in $pa$. Our main result establishes the relation between the exponential map $Exp_{z_0}(z_1)$ of $d$ ($z_0,z_1ind$) and the cross ratio of the four-tuple $$delta(-infty), delta(0)=z_0, delta(1)=z_1 , delta(+infty),$$ where $delta$ is the unique geodesic of $d$ joining $z_0$ and $z_1$ at times $t=0$ and $t=1$, respectively. Here $delta(-infty)=lim_{to-infty}delta(t)$ and $delta(+infty)=lim_{to+infty}delta(t)$, the limits are considered in the strong operator topology, and may take values in the universal algebra $a^{**}$. |
| description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023 2024-12-23T13:21:48Z 2024-12-23T13:21:48Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
Andruchow, E., Corach, G. y Recht, L. (2023). Projective geometry of the Poincaré disk of a C*-algebra. Journal of Operator Theory, 89(1), 155-182. 0379-4024 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1811 |
| identifier_str_mv |
Andruchow, E., Corach, G. y Recht, L. (2023). Projective geometry of the Poincaré disk of a C*-algebra. Journal of Operator Theory, 89(1), 155-182. 0379-4024 |
| url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1811 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
http://dx.doi.org/10.7900/jot.2021dec27.2356 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Theta Foundation |
| publisher.none.fl_str_mv |
Theta Foundation |
| dc.source.none.fl_str_mv |
Journal of Operator Theory. 2023; 89(1): 155-182 http://www.mathjournals.org/jot/2023-089-001/ reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
| reponame_str |
Repositorio Institucional UNGS |
| collection |
Repositorio Institucional UNGS |
| instname_str |
Universidad Nacional de General Sarmiento |
| repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
| repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
| _version_ |
1847422586309312512 |
| score |
12.589754 |